
Improving Impact Sourcing
via Efficient Global Service Delivery

Michael Borokhovich
The University of Texas at Austin

michaelbor@utexas.edu

Avhishek Chatterjee
The University of Texas at Austin

avhishek@utexas.edu
Jason Rogers

Samasource
jason.rogers@samasource.org

Lav R. Varshney
University of Illinois at Urbana-Champaign

varshney@illinois.edu

ABSTRACT
Impact sourcing outsources tasks to people living in poverty
in underdeveloped regions, allowing them to earn the dignity
of work and a living wage. Samasource is a leader in impact
sourcing, decomposing and encapsulating data projects into
microwork for global service delivery at centers around the
world. By using microwork centers instead of large for-profit
vendors, Samasource calculates customers can get jobs done
for 30% to 40% less, which is important since cost is the ma-
jor driver of new contracts (rather than social mission). A
key part of operations is routing and scheduling work, cur-
rently performed manually. This paper first derives novel
data-driven, queuing-theoretic algorithms for this problem
and then demonstrates on real-world data that they can
considerably improve global service delivery efficiency. This
reduces turnaround time and costs, thereby increasing the
scope of social impact. The path to deploying these algo-
rithms in practice is also discussed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.2 [Computer Systems Organization]: Computer Com-
munication Networks

General Terms
Performance

Keywords
global service delivery, impact sourcing, routing, scheduling,
social good

1. INTRODUCTION
Samasource is a mission-focused nonprofit company that

connects people in poverty to life-changing digital work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Data for Good Exchange 2015 New York, New York USA
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Workers are primarily women and youth without a college
degree and having never held a job before, located in under-
developed regions such as Haiti, Ghana, Uganda, Kenya, and
India. Since 2008, Samasource has paid out over $3.5 mil-
lion in direct wages and benefits to 6,527 workers that also
collectively support 20,161 income dependents, for a total
of 26,688 people lifted out of poverty. Evaluation data has
demonstrated the income increase of workers directly im-
proves their quality of life as measured by spending in five
key categories: shelter, food, education, local remittances,
and savings. Unlike charitable giving which involves direct
wealth transfers, so-called impact sourcing allows people to
earn a living wage and to establish a dignified life for them-
selves and their dependents. Human resource development
and worker churn is part of the model: 89% of workers pur-
sue additional means of formal employment and/or educa-
tion after working for Samasource.

Samasource approaches impact sourcing—essentially busi-
ness process outsourcing to boost economic development—
as follows. They provide requesters of digital work with
project management and consultation on task design while
connecting them with workers. Partner agencies in underde-
veloped regions provide delivery centers, which are physical
locations with required facilities (e.g., managers, computers,
stable electricity) that workers go to for work [4, 7].

By impact sourcing rather than using large for-profit ven-
dors, Samasource calculates customers can get jobs done for
30% to 40% less, which is important since cost is the major
driver of new contracts (rather than social mission). Cus-
tomers that request work include many large multinational
corporations such as eBay, Getty Images, Google, TripAd-
visor, Walmart, and Microsoft.

The basic work model is to break down and encapsulate
large data projects into smaller microwork tasks that can
be distributed to global work centers through a web-based
platform called SamaHub. This approach of work decom-
position, encapsulation, distribution, and recombination has
emerged throughout the economy [1] and is very much in line
with global service delivery systems that large for-profit com-
panies such as Wipro and IBM have also deployed [5, 6, 9].

A key to efficient global service delivery is reducing coor-
dination costs [3]. Encapsulation of microwork [8] enables
optimal routing and scheduling algorithms to coordinate the
skills required for doing work with the skills that workers
possess [2, 10]. Samasource, however, uses manual assign-
ment of work to work centers. The purpose of this paper is
to develop coordination algorithms for the SamaHub plat-

Table 1: Time Zones of Work Center Countries. Ac-
tually, Jason told us that they have the following
time zones: (EAT, IST, EDT, GMT/UTC) which
are: (3,5.5,-4,0)

Country Time Zone
Haiti UTC –05:00
Ghana UTC +00:00
Uganda UTC +03:00
Kenya UTC +03:00
India UTC +05:30

form to make it more efficient, to reduce costs, to drive more
contracts, and thereby make greater social impact.

The data-driven, queuing-based algorithm we develop...
Demonstrate 3.5x improvement on all work, and 2x im-

provement on real-time work.

2. SYSTEM MODEL AND NOVEL ALGO-
RITHMS

Tasks arrive in impact sourcing platforms over time. Each
task has multiple steps and each step requires different skills
and time. Similarly, agents arrive and leave the system (de-
pending on working hours) and different agents have differ-
ent skills and availability. The platform allocates tasks or
steps at a regular interval of time to the available agents at
that time. Steps of a task have precedence or ordering con-
straints among them between them, i.e., certain steps can be
allocated only if the preceding steps have been completed.
A step can only be allocated if we have an agent or a group
of agents who have the required skills and the time to serve
the step. A step can either be flexible or inflexible. A group
of agents can pool their time and skills to serve a flexible
step, whereas for an inflexible step we need to find an agent
that has all the skills and time.

We designed queuing theoretic policies that are optimal in
the sense that they can support maximum supportable task
loads into the system. We proposed computationally effi-
cient algorithms to implement the policies. Finally, we mod-
ified the policies to suit the special needs of impact sourcing
platforms: (i) fast, simple and decentralized, (ii) customers’
freedom to choose agents without hurting resource utiliza-
tion and (iii) good performance in terms of backlog of tasks
and total system time of a job which we call turn-around-
time (TAT).

2.1 A Note on Theoretical Results
Our queuing theoretic algorithms are provably optimal for

dynamical impact sourcing platforms where tasks and agents
arrive over time according to stochastic processes. Optimal-
ity of the algorithms are in the sense of maximal system
stability, a well known notion in dynamical and queuing sys-
tems. We also showed good backlog performance of our pro-
posed schemes, specifically we show that for a broad class of
task arrival processes the total backlog in the system at any
time scales no faster than logarithm in the system size with
very high probability. Details of the mathematical model of
the system, algorithms and the theoretical results are in [].

3. SIMULATION FRAMEWORK

Figure 1: A sample black and white graphic (.eps
format).

4. RESULTS

5. EVALUATION
In sections ??–?? we have characterized limits of different

types of crowdsourcing systems, proposed efficient computa-
tional methods for centralized optimal schemes and designed
decentralized schemes with provable bounds on task-backlog
while offering freedom of choice to customers. This section
complements the results presented in previous sections. Here
we study crowdsourcing systems using real data from a non-
profit crowdsourcing company and Monte Carlo simulations.
We consider much simplified (in terms of computation and
implementation) of the proposed decentralized algorithms
above and study their performances on real as well as syn-
thetic data.

We first consider performance evaluation on real data. In
the real data that we have there are tasks with 2−? steps
and both agents and steps are flexible. For this system,
we implement a very simple version of step flex where we
prioritize the steps with higher precedence to choose agents
greedily with random tie-breaking.

Let us first describe the evaluation of the Samasource’s
scheduling using its real data. The dataset contains 9.3M
tasks and each belongs to a specific project. Some of the
projects are regarded as real-time which means that they
have higher priority. The overall number of tasks that be-
long to the real-time projects is about 4.2M. Each task is
comprised of 1 or 2 steps which in turn comprised of a sin-
gle sub-step. Some of the tasks have strict step ordering, i.e.,
the previous step must be completed before the next could
be scheduled. Average sub-step working time requirement
is 340sec. From the dataset we were able to calculate the
turn-around time (TAT) for each task, i.e., the time since
the task arrived to the system until the time its last step was
completed. The cdf of TAT for all projects and for real-time
projects only can be found in Figure 2.

In order to compare the Samasource scheduling with our
approach, we used the Samasource dataset as an input to
our algorithm step flex. We didn’t have exact informa-
tion about workers availability in the Samasource system,
thus the following assumptions were made (and approved to
be reasonable). The number of active workers in the Sama-
source system is 625, where each worker works every day
from 9am to 5pm and they are evenly distributed across
the four timezones: −4, 0, 3, 5.5. Each worker possesses the
skills required for any sub-step in the dataset. In Figure
2 we compare the CDF of tasks turn-around time of the
Samasource scheduling (calculated from the data) and our
approach step flex (simulated with the data as an input).
We can see that our algorithm substantially outperforms the
Samasource scheduling. The average TAT for all projects is
×6.5 better and for the realtime projects is more than ×8.

In Figure 3 we can see how the algorithm step flex per-
forms as a function of number of workers. As the number
of workers grows, the tasks turn-around time decreases (see
Figure 3(a)). The benefit of adding more workers to the sys-
tem can be seen even clearer when we analyze the backlog,
i.e., the average number of steps that entered the system but

were not scheduled yet. Figure 3(b) shows that the backlog
queue substantially decreases when the number of workers
increases.

Next we turn to compare our algorithms on synthetic data.
For evaluation on synthetic data we consider flexible agents
and flexible steps, and flexible agents and inflexible steps.
Algorithm step flex mentioned above is used for the first
system. For the second system we use a simplified version
of Restricted Greedy scheme where we prioritize steps with
higher skill requirements and allocate among them greed-
ily. In addition, we consider another scenario which is in
between flexible and inflexible steps, here each sub-step has
to be allocated to a single agent, but different sub-steps of
a step can be allocated to different agents. For this sys-
tem we consider step semiflex where steps allocate them-
selves greedily while ensuring that a sub-step gets all ser-
vice from an agent. While it is expected that step flex
will outperform step inflex, we found, somewhat surpris-
ingly, that step flex and step semiflex have very similar
performance.

The first set of generated data included tasks with up to
three steps in each and with strict ordering. Each step was
comprised of one to three random sub-steps out of five possi-
ble types. Working time requirement for each sub-step was
uniformly distributed between 60 and 600 seconds. Each
worker in the system has daily availability from 9am to
5pm and and they are evenly distributed across the four
timezones: −4, 0, 3, 5.5. A worker possesses a random set of
skills that enables him to work on up to three (out of five)
sub-step types. For each of our three algorithms we compare
three metrics: TAT, backlog queue and workers utilization.
The experiment simulated a single run over a timespan of
40 days.

In Figure 4 we can see that algorithms step flex and
step semiflex outperform step inflex for both cases: 500
workers in the system and 700 workers. When the load on
the system is 150 tasks per hour and the number of workers
is 500 we can see that algorithm step inflex is substan-
tially worse since it became unstable for this load. Notice
that step flex and step semiflex perform very similar
which can be explained with relatively short sub-step work
time requirement in which case necessity to splitting it be-
comes a rear event. Another interesting observation is that
the workers utilization of step inflex is not much worse
than of the other algorithms. This can be explained by the
long backlog queue of step inflex. Though it is harder for
step inflex to find a worker that is capable to work on on
the whole step, when the backlog becomes large, the prob-
ability that a given worker will be assigned to some whole
step is growing.

The last set of results uses the same synthetic data as the
previous with a small change: working time requirement for
each sub-step was uniformly distributed between 600 and
6000 seconds. In this experiment (see Figure 5) we can see a
slight advantage of step flex upon step semiflex. This is
due to the longer working time requirements per sub-step,
since now the cases in which a sub-step may be split to
improve scheduling are more probable. In this scenario, dis-
advantage of step inflex is even more obvious: already for
the load of 50 tasks per hour and 1200 workers, its TAT and
backlog are very large and unstable.

To summarize, our approach substantially outperforms
the scheduling scheme currently used by Samasource. While

step flex achieves best performance in terms of TAT and
backlog, step semiflex may be a good alternative. Its per-
formance is almost the same but it does not require ability
to split sub-steps among different workers, and it is compu-
tationally lighter.

0.0 0.5 1.0 1.5 2.0 2.5

TAT [sec] 1e5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 ta

sk
s

TAT CDF, Samsource data

all projects, sama, avg=6.3e+04
all projects, step_flex, avg=9.6e+03

rt projects, sama, avg=4.5e+04
rt projects, step_flex, avg=5.4e+03

Figure 2: CDF of tasks turn-around time (TAT) using

Samasource dataset. Samasource scheduling “sama” vs

our algorithm step flex.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Num of workers 1e3

2000

4000

6000

8000

10000

12000

14000

TA
T

[s
ec

]

TAT, Samasource data, step_flex

all projects
rt projects

(a)

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Num of workers 1e3

800

1000

1200

1400

1600

1800

2000

2200

A
ve

ra
ge

 b
ac

kl
og

 [n
um

be
r o

f u
ns

ch
ed

ul
ed

 s
te

ps
]

Backlog, Samasource data, step_flex

(b)

Figure 3: Performance of our step flex algorithm on

Samasource data, as a function of number of workers.

(a) Tasks turn-around time (TAT). (b) Average backlog

(number of unscheduled steps in the system).

6. CONCLUSION
We presented a set of novel algorithms, which are detailed

elsewhere.
Demonstrated the possibility of significant improvement

on real-world data
To deploy things in SamaHub, we would...

7. ACKNOWLEDGMENTS
We thank Sriram Vishwanath for his support in pursuing

this project.

8. REFERENCES
[1] D. Bollier. The Future of Work: What It Means for

Individuals, Businesses, Markets and Governments.
The Aspen Institute, Washington, DC, 2011.

50 [tasks/hour] 100 [tasks/hour] 150 [tasks/hour]
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
T

A
T

 [
se

c]

42872

TAT, Synthetic data
step_flex, 500 w
step_semiflex, 500 w

step_inflex, 500 w
step_flex, 700 w

step_semiflex, 700 w
step_inflex, 700 w

(a)

50 [tasks/hour] 100 [tasks/hour] 150 [tasks/hour]
0

100

200

300

400

500

600

700

800

A
ve

ra
g

e
b

ac
kl

o
g

 [
n

u
m

b
er

 o
f

u
n

sc
h

ed
u

le
d

 s
te

p
s]

3163

Backlog, Synthetic data

step_flex, 500 w
step_semiflex, 500 w

step_inflex, 500 w
step_flex, 700 w

step_semiflex, 700 w
step_inflex, 700 w

(b)

50 [tasks/hour] 100 [tasks/hour] 150 [tasks/hour]
0

5

10

15

20

25

30

35

40

W
o

rk
er

s
u

ti
liz

at
io

n
 [

%
]

Utilization, Synthetic data
step_flex, 500 w
step_semiflex, 500 w

step_inflex, 500 w
step_flex, 700 w

step_semiflex, 700 w
step_inflex, 700 w

(c)

Figure 4: Performance of our algorithms on synthetic data with short sub-steps (60 − 600 sec), as a function of load.

(a) Tasks turn-around time (TAT). (b) Average backlog (number of unscheduled steps in the system). (c) Workers

utilization.

20 [tasks/hour] 50 [tasks/hour] 80 [tasks/hour]
0

5000

10000

15000

20000

25000

30000

35000

40000

T
A

T
 [

se
c]

54058

151658
77517

TAT, Synthetic data, long skills

step_flex, 500 w
step_semiflex, 500 w

step_inflex, 500 w
step_flex, 700 w

step_semiflex, 700 w
step_inflex, 700 w

(a)

20 [tasks/hour] 50 [tasks/hour] 80 [tasks/hour]
0

200

400

600

800

A
ve

ra
g

e
b

ac
kl

o
g

 [
n

u
m

b
er

 o
f

u
n

sc
h

ed
u

le
d

 s
te

p
s]

1145

6862
2977

Backlog, Synthetic data, long skills

step_flex, 500 w
step_semiflex, 500 w

step_inflex, 500 w
step_flex, 700 w

step_semiflex, 700 w
step_inflex, 700 w

(b)

20 [tasks/hour] 50 [tasks/hour] 80 [tasks/hour]
0

10

20

30

40

50

60

70

80

90

W
o

rk
er

s
u

ti
liz

at
io

n
 [

%
]

Utilization, Synthetic data, long skills

step_flex, 500 w
step_semiflex, 500 w

step_inflex, 500 w
step_flex, 700 w

step_semiflex, 700 w
step_inflex, 700 w

(c)

Figure 5: Performance of our algorithms on synthetic data with long sub-steps (600− 6000 sec), as a function of load.

(a) Tasks turn-around time (TAT). (b) Average backlog (number of unscheduled steps in the system). (c) Workers

utilization.

[2] A. Chatterjee, L. R. Varshney, and S. Vishwananth.
Work capacity of freelance markets: Fundamental
limits and decentralized schemes. In Proc. 2015 IEEE
INFOCOM, Apr. 2015. to appear.

[3] M. Ehret and J. Wirtz. Division of labor between
firms: Business services, non-ownership-value and the
rise of the service economy. Service Sci., 2(3):136–145,
Fall 2010.

[4] F. Gino and B. R. Staats. The microwork solution.
Harvard Bus. Rev., 90(12):92–96, Dec. 2012.

[5] IBM Global Business Services. Application assembly
optimization: A new approach to global delivery, Aug.
2009.

[6] IBM Global Business Services. Application assembly
optimization: A distinct approach to global delivery,
Mar. 2010.

[7] A. Marcus and A. Parameswaran. Crowdsourced Data
Management: Industry and Academic Perspectives.
2015. in preparation.

[8] D. Oppenheim, S. Bagheri, K. Ratakonda, and Y.-M.
Chee. Coordinating distributed operations. In E. M.
Maximilien, G. Rossi, S.-T. Yuan, H. Ludwig, and
M. Fantinato, editors, Service-Oriented Computing,
volume 6568 of Lecture Notes in Computer Science,
pages 213–224. Springer, Berlin, 2011.

[9] D. M. Upton and V. A. Fuller. Wipro technologies:
The factory model. Harvard Business School:

9-606-021, Oct. 2005.

[10] L. R. Varshney, S. Agarwal, Y.-M. Chee, R. R.
Sindhgatta, D. V. Oppenheim, J. Lee, and
K. Ratakonda. Cognitive coordination of global service
delivery. arXiv:1406.0215 [cs.OH]., June 2014.

