Distributed Computing on Core-Periphery Networks:
Axiom-Based Design

Chen Avin, Michael Borokhovich, Zvi Lotker, and David Peleg

3 Y
D)
- \
-‘
N
)

"

"
e
’

Department of Communication Systems Engineering, BGU, Israel
Department of Computer Science, The Weizmann Institute, Israel

ICALP 2014



Networks for Distributed Computing

e \What do we want?
« fast running times, robust, small diameter, bounded degree?

e cost efficient. communication links, nodes memory



Networks for Distributed Computing

e \What do we want?
« fast running times, robust, small diameter, bounded degree?

e cost efficient. communication links, nodes memory

/ N
e (lassic examples: L —"

™S

e Stars

e C(ligues .
e Bounded degree Expanders



Core—Perigherx Structure




Core:
small, dense

Core-Periphery Structure

@)




Core:
small, dense

Core-Periphery Structure

Periphery:
large, sparse

@)




Core-Periphery Structure

Core: Periphery:

small, dense large, sparse

e Social networks structure
[Avin, Lotker, Pignolet,Turkel 2012]

IR

@)




Core-Periphery Structure

Core: Periphery:
small, dense large, sparse

e Social networks structure
[Avin, Lotker, Pignolet,Turkel 2012]
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e Global economy - wealthiest
countries are well connected with
trade and transportation routes

e P2P networks - (e.qg., Skype where
super nodes are the Core)
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Axiomatic Approach

* We define networks using axioms:
 No concrete generative model
* Abstract away algorithmic requirements
e Algorithmic vs structural properties
 Models that satisty axioms can be proposed




Core-Periphery Axioms: A1, A2, A3
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A1: Balanced Core Boundary
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Axiom Independence
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Axiom Independence
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no convergecast
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A1 A2 A3 A1 A2 A3

no clique emulation no balanced boundary
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Structural Implications

Balanced boundary
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Core is dense A2
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Algorithms for Core-Periphery Networks

Matrix Operations

A, B eZ™"™, O(k) sparse
s e L"”

Memory per node - O(y/n)

Based on fast info spreading
In clique
[Lenzen, Wattenhofer, 2011]
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Aggregate Functions

each node knows:
rank of its value

mode of the values
num of distinct values
median

value for each node

value for each node
each value belongs to
a specific group/area

each node knows
top r of each area

Memory per node - O(y/n) [E?_iifgn,oznozi?t sorting in clique
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D =1: O(loglogn)
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Distributed MST for Core-Periphery Networks
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e We want:

 cach phase O(log n) rounds 2
3
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Distributed MST tor Core-Periphery Networks

Each node in V has two officials in C: 1. Node’s Representative - fixed
2. Fragment’s Leader - may migrate in each phase
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Distributed MST tor Core-Periphery Networks

Each node in V has two officials in C: 1. Node’s Representative - fixed

2. Fragment’s Leader - may migrate in each phase

F5 , F3

F1 F4
Each node in Vfinds its mwoe ‘!’ () O O O) (‘m OO
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All mwoe are delivered to C \ \
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Algorithms for Core-

Periphery Networks

Task Running time Lower bounds

on CP networks|All Axioms Any 2 Axioms
MST * O(log® n) 2(1) Q(¥n)
Matrix transposition O(k) 2(k) 2(n)
Vector by matrix multiplication O(k) 2(k/logn) 2(n/logn)
Matrix multiplication O(k?) (k) 2(n/logn)
Find my rank O(1) 2(1) 2(n)
Find median O(1) 2(1) 2(logn)
Find mode O(1) 2(1) 2(n/logn)
Find number of distinct values O(1) 2(1) 2(n/logn)
Top r ranked by areas O(r) 2(r) 2(ry/n)

k - maximum number of nonzero entries in a row or column.

S

- randomized algonithm
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Thank You!



