Distributed Computing on Core-Periphery Networks:
Axiom-Based Design

Chen Avin, Michael Borokhovich, Zvi Lotker, and David Peleg

3 Y
D)
- \
-‘
N
)

"

"
e
’

Department of Communication Systems Engineering, BGU, Israel
Department of Computer Science, The Weizmann Institute, Israel

ICALP 2014



Networks for Distributed Computing

e \What do we want?
« fast running times, robust, small diameter, bounded degree?

e cost efficient. communication links, nodes memory



Networks for Distributed Computing

e \What do we want?
« fast running times, robust, small diameter, bounded degree?

e cost efficient. communication links, nodes memory

/ N
e (lassic examples: L —"

™S

e Stars

e C(ligues .
e Bounded degree Expanders



Core—Perigherx Structure




Core:
small, dense

Core-Periphery Structure

@)




Core:
small, dense

Core-Periphery Structure

Periphery:
large, sparse

@)




Core-Periphery Structure

Core: Periphery:

small, dense large, sparse

e Social networks structure
[Avin, Lotker, Pignolet,Turkel 2012]

IR

@)




Core-Periphery Structure

Core: Periphery:
small, dense large, sparse

e Social networks structure
[Avin, Lotker, Pignolet,Turkel 2012]

£ S0

e Global economy - wealthiest
countries are well connected with
trade and transportation routes

e P2P networks - (e.qg., Skype where
super nodes are the Core)

@)




Axiomatic Approach

* We define networks using axioms:
 No concrete generative model
* Abstract away algorithmic requirements
e Algorithmic vs structural properties
 Models that satisty axioms can be proposed




Core-Periphery Axioms: A1, A2, A3

b:.8
O (]
i
o -
O
@)
Cuaim é
O —
O -
O
o
@)
O
@)
@)
O
O 2
@)
@)
@) (




Core-Periphery Axioms: A1, A2, A3

A1: Balanced Core Boundary

wee, el 5q)

din (U)

%

Q




Core-Periphery Axioms: A1, A2, A3

A1: Balanced Core Boundary

wee, deutl® 5y

din (U)

A2: Core Clique Emulation

¢ &2l e in O(1)




Core-Periphery Axioms: A1, A2, A3

A1: Balanced Core Boundary

wee, deutl® 5y

din (?))

A2: Core Clique Emulation

¢ &2l ¢ in O(1)

A3: Periphery-Core Convergecast ©

all-to-any — o

> C, in O(1)

D




Axiom Independence



A1 A2 A3

Axiom Independence



A1 A2 A3

Axiom Independence

. A1 A2 A3

no convergecast



A1 A2 A3

Axiom Independence

g A1 A2 A3

no convergecast

A1 A2 A3

no cligue emulation



Axiom Independence

IRAN I g

S\ AN Za——: A1 A2 A3

no convergecast

A1 A2 A3

@, D, C @
S
A1 A2 A3 A1 A2 A3

no clique emulation no balanced boundary



Structural Implications




Structural Implications

Balanced boundary

Vo € C,dout(v) = O(ne)

din(v) = O(ne)




Structural Implications

Balanced boundary

O(nc) [

Yov ~ C, dout (U)

din (U)

O(nc) [4

Core is dense A2

me = O(ng)




Structural Implications

Balanced boundary

O(nc) ¥
O(nc) [4

Core is dense A2

me = O(ng)

Vv € C, dout (U)
din (U)

Constant Diameter [V1¥)




Structural Implications

Balanced boundary

O(nc) ¥
O(nc) [4

Core is dense A2

me = O(ng)

Vv € C, dout (U)
din (U)

Constant Diameter V1%

Size of the Core o

Q(vn) < ne < O(Vm) "¢




Structural Implications

Balanced boundary

O(nc) ¥
O(nc) [4

Core is dense A2

Vv € C, dout (U)
din (U)

me = @(ng) g
@,
Constant Diameter [Y21%) .
OO
@)
Size of the Core "o
Zdin(v) < 2m o
V) < ne < O(vm) - nZ < 2m m OOO@
— @
\/ ne < O(y/m) "8 0’56 ®°



Structural Implications

Balanced boundary

O(nc) ¥
O(nc) [4

Core is dense A2

me = O(ng)

Vv € C, dout (U)
din (U)

Constant Diameter V1%

Size of the Core

Zdout(v) > n— nc m ° ®
Q < < O vel o
(vn) < ne < O(vVm) 2> n—ne 5] 0

@)
@
\ ne > Q(vn) "8 o660




Structural Implications

Balanced boundary

O(nc) ¥
@(nc) m

Core is dense A2

Vv € C, dout (U)
Clin (?J)

me = @(ng) g
@)
Constant Diameter [Y21%) .
OQ
@)
Size of the Core if mis linear, then: "o
ko)
Q(vn) < ne < O(y/m) ne = O(v/n) °o
. O
mc—@(m) OOOOOOOOOOO




Algorithms for Core-Periphery Networks

Matrix Operations

A, B eZ™"™, O(k) sparse
s e L"”



Algorithms for Core-Periphery Networks

Matrix Operations

A, BeZ™™", O(k) sparse
se "




Algorithms for Core-Periphery Networks

Matrix Operations

A, BeZ™™", O(k) sparse
se "




Algorithms for Core-Periphery Networks

Matrix Operations

A, BeZ™™", O(k) sparse
se "




Algorithms for Core-Periphery Networks

Matrix Operations

A, BeZ™™", O(k) sparse
se "

Memory per node - O(y/n)




Algorithms for Core-Periphery Networks

Matrix Operations

A, B eZ™"™, O(k) sparse
s e L"”

Memory per node - O(y/n)

Based on fast info spreading
In clique
[Lenzen, Wattenhofer, 2011]




Algorithms for Core-Periphery Networks

Aggregate Functions




Algorithms for Core-Periphery Networks

Aggregate Functions

each node knows:
rank of its value

mode of the values
num of distinct values
median

value for each node =




Algorithms for Core-Periphery Networks

Aggregate Functions

each node knows:
rank of its value

mode of the values
num of distinct values
median

value for each node

value for each node
each value belongs to
a specific group/area

each node knows
top r of each area




Algorithms for Core-Periphery Networks

Aggregate Functions

each node knows:
rank of its value

mode of the values
num of distinct values
median

value for each node

value for each node
each value belongs to
a specific group/area

each node knows
top r of each area

Memory per node - O(1/n)



Algorithms for Core-Periphery Networks

Aggregate Functions

each node knows:
rank of its value

mode of the values
num of distinct values
median

value for each node

value for each node
each value belongs to
a specific group/area

each node knows
top r of each area

Memory per node - O(y/n) [E?_iifgn,oznozi?t sorting in clique



Distributed Minimum Spanning Tree (CONGEST Model)

)
‘r




Distributed Minimum Spanning Tree (CONGEST Model)

D =1: O(loglogn)
[Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg 2005]




Distributed Minimum Spanning Tree (CONGEST Model)

D =1: O(loglogn)
[Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg 2005]

D=2: O(logn) SN
D>3: Q(Un) e :
[Z. Lotker, B. Patt-Shamir, D. Peleg 2006] S

O

@)

@)

@)




Distributed Minimum Spanning Tree (CONGEST Model)

D =1: O(loglogn)
[Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg 2005]

KON
S ' &"\V\&\‘}&\\ ) \\.“\
NN

O

D=2: Oflogn) VANG/ANNNY | ¢!
D>3: Q(Yn) il SUAKEL
- O
[Z. Lotker, B. Patt-Shamir, D. Peleg 2006] S
O
@)
@)
@)
We prove: °l
. @)
CP-MST algorithm: O(log”n) o
@
o
@)
o o 3




Distributed MST for Core-Periphery Networks

 Based on Boruvka's algorithm - log n phases




Distributed MST for Core-Periphery Networks

 Based on Boruvka's algorithm - log n phases

 On each phase need to exchange many messages:




Distributed MST for Core-Periphery Networks

 Based on Boruvka's algorithm - log n phases

 On each phase need to exchange many messages:

* select min-weight outgoing edge
* merge fragments
e (amortized pointer jumping) ol

. '\ﬁ



Distributed MST for Core-Periphery Networks

 Based on Boruvka's algorithm - log n phases

 On each phase need to exchange many messages:

* select min-weight outgoing edge
* merge fragments
e (amortized pointer jumping) ol

. '\ﬁ

| 4

e We want:

 cach phase O(log n) rounds 2
3

F5



Distributed MST tor Core-Periphery Networks

Each node in V has two officials in C: 1. Node’s Representative - fixed
2. Fragment’s Leader - may migrate in each phase

4 )
O O O O O
C
O O Oury)
((Fl) [(F?) [(F4) Y




Distributed MST tor Core-Periphery Networks

Each node in V has two officials in C: 1. Node’s Representative - fixed

2. Fragment’s Leader - may migrate in each phase

F1 F2 F3 F4
G000 60

4 )
O O O O O
C
O O Oury)
((Fl) [(F?) [(F4) Y




Distributed MST tor Core-Periphery Networks

Each node in V has two officials in C: 1. Node’s Representative - fixed

2. Fragment’s Leader - may migrate in each phase

Each node in Viinds its mwoe O O
All mwoe are delivered to C

- )
C
O O O (R
((Fl) [(Fy) [(Fy) Y




Distributed MST tor Core-Periphery Networks

Each node in V has two officials in C: 1. Node’s Representative - fixed
2. Fragment’s Leader - may migrate in each phase

Representatives send to leaders




Distributed MST tor Core-Periphery Networks

Each node in V has two officials in C: 1. Node’s Representative - fixed

2. Fragment’s Leader - may migrate in each phase

F5 , F3

F1 F4
Each node in Vfinds its mwoe ‘!’ () O O O) (‘m OO
: N

All mwoe are delivered to C \ \

\ ., ‘ i \

)

Representatives send to leaders O O “‘b‘
/\ ‘

Leaders decide on merging ® ) lngg




Algorithms for Core-

Periphery Networks

Task Running time Lower bounds

on CP networks|All Axioms Any 2 Axioms
MST * O(log® n) 2(1) Q(¥n)
Matrix transposition O(k) 2(k) 2(n)
Vector by matrix multiplication O(k) 2(k/logn) 2(n/logn)
Matrix multiplication O(k?) (k) 2(n/logn)
Find my rank O(1) 2(1) 2(n)
Find median O(1) 2(1) 2(logn)
Find mode O(1) 2(1) 2(n/logn)
Find number of distinct values O(1) 2(1) 2(n/logn)
Top r ranked by areas O(r) 2(r) 2(ry/n)

k - maximum number of nonzero entries in a row or column.

S

- randomized algonithm







Summary

e Axiomatic approach

e (Core-periphery is fast and cost efficient network architecture

)0 000
0 QTR0 0 o
OOOOO
e} Q

e Simple algorithms design

C o E AN f A e ®
&g LN ®
@ o
90900



Summary

Axiomatic approach
Core-periphery is tast and cost efficient network architecture

Simple algorithms design

Future work:
e \What else can be computed efficiently?

e \What are the basic building blocks in distributed computing”?



Summary

Axiomatic approach
Core-periphery is tast and cost efficient network architecture

Simple algorithms design

Future work:

e \What else can be computed efficiently?

e \What are the basic building blocks in distributed computing”?

Thank You!



