Distributed Computing on Core-Periphery Networks: Axiom-Based Design

Chen Avin, Michael Borokhovich, Zvi Lotker, and David Peleg

Department of Communication Systems Engineering, BGU, Israel Department of Computer Science, The Weizmann Institute, Israel

ICALP 2014

Networks for **Distributed Computing**

- What do we want?
 - fast running times, robust, small diameter, bounded degree?
 - **cost efficient**: communication links, nodes memory

Networks for **Distributed Computing**

- What do we want?
 - fast running times, robust, small diameter, bounded degree?
 - cost efficient: communication links, nodes memory

Classic examples:
Stars
Cliques
Bounded degree Expanders

Core: small, dense

Periphery: large, sparse

Core:Periphery:small, denselarge, sparse

Social networks structure
 [Avin, Lotker, Pignolet, Turkel 2012]

Core:Periphery:small, denselarge, sparse

Social networks structure
 [Avin, Lotker, Pignolet, Turkel 2012]

- Global economy wealthiest countries are well connected with trade and transportation routes
- P2P networks (e.g., Skype where super nodes are the Core)

Axiomatic Approach

- We define networks using axioms:
 - No concrete generative model
 - Abstract away algorithmic requirements
 - Algorithmic vs structural properties
 - Models that satisfy axioms can be proposed

A1 A2 A3

no convergecast

A1 A2 A3

A1 A2 A3

A1 A2 A3 no clique emulation

no convergecast

A1 A2 A3

A1 A2 A3 no clique emulation

A1 A2 A3 no balanced boundary

Balanced boundary

$$\forall v \in \mathcal{C}, d_{\text{out}}(v) = O(n_{\mathcal{C}})$$
 A1
 $d_{\text{in}}(v) = \Theta(n_{\mathcal{C}})$ A2

Balanced boundary

$$\forall v \in \mathcal{C}, d_{\text{out}}(v) = O(n_{\mathcal{C}})$$
 A1
 $d_{\text{in}}(v) = \Theta(n_{\mathcal{C}})$ A2

Core is dense

$$m_{\mathcal{C}} = \Theta(n_{\mathcal{C}}^2)$$

Balanced boundary

$$\forall v \in \mathcal{C}, d_{\text{out}}(v) = O(n_{\mathcal{C}})$$
 A1
 $d_{\text{in}}(v) = \Theta(n_{\mathcal{C}})$ A2

Core is dense

 $m_{\mathcal{C}} = \Theta(n_{\mathcal{C}}^2)$

Constant Diameter A2,A3

Balanced boundary

$$\forall v \in \mathcal{C}, d_{\text{out}}(v) = O(n_{\mathcal{C}})$$
 A1
 $d_{\text{in}}(v) = \Theta(n_{\mathcal{C}})$ A2

A2

Core is dense

 $m_{\mathcal{C}} = \Theta(n_{\mathcal{C}}^2)$

Constant Diameter A2,A3

Size of the Core

 $\Omega(\sqrt{n}) \le n_{\mathcal{C}} \le O(\sqrt{m})$

Balanced boundary

$$\forall v \in \mathcal{C}, d_{out}(v) = O(n_{\mathcal{C}})$$
 A1
 $d_{in}(v) = \Theta(n_{\mathcal{C}})$ A2

A2

Core is dense

 $m_{\mathcal{C}} = \Theta(n_{\mathcal{C}}^2)$

Constant Diameter A2,A3

Size of the Core

$$\sum_{v \in \mathcal{C}} d_{in}(v) \le 2m$$

$$n_{\mathcal{C}}^2 \le 2m$$

$$n_{\mathcal{C}}^2 \le 2m$$

$$n_{\mathcal{C}} \le O(\sqrt{m})$$

Balanced boundary

$$\forall v \in \mathcal{C}, d_{\text{out}}(v) = O(n_{\mathcal{C}})$$
 A1
 $d_{\text{in}}(v) = \Theta(n_{\mathcal{C}})$ A2

A2

Core is dense

 $m_{\mathcal{C}} = \Theta(n_{\mathcal{C}}^2)$

Constant Diameter A2,A3

Size of the Core

$$\sum_{v \in \mathcal{C}} d_{\text{out}}(v) \ge n - n_{\mathcal{C}} \quad \textbf{A3}$$
$$n_{\mathcal{C}}^2 \ge n - n_{\mathcal{C}} \quad \textbf{A1}$$
$$n_{\mathcal{C}} \ge \Omega(\sqrt{n})$$

Balanced boundary

$$\forall v \in \mathcal{C}, d_{out}(v) = O(n_{\mathcal{C}})$$
 A1
 $d_{in}(v) = \Theta(n_{\mathcal{C}})$ A2

Core is dense

 $m_{\mathcal{C}} = \Theta(n_{\mathcal{C}}^2)$

Constant Diameter A2,

A2

Size of the Core

 $\Omega(\sqrt{n}) \le n_{\mathcal{C}} \le O(\sqrt{m})$

if *m* is linear, then: $n_{\mathcal{C}} = \Theta(\sqrt{n})$ $m_{\mathcal{C}} = \Theta(m)$

Matrix Operations

 $A, B \in \mathbb{Z}^{n \times n}$, O(k) sparse $s \in \mathbb{Z}^n$

Matrix Operations

 $A, B \in \mathbb{Z}^{n \times n}$, O(k) sparse $s \in \mathbb{Z}^n$

Aggregate Functions

Aggregate Functions

value for each node

each node knows: **rank** of its value **mode** of the values **num of distinct values median**

Aggregate Functions

a specific group/area

top r of each area

Aggregate Functions

Memory per node - $O(\sqrt{n})$

Aggregate Functions

Memory per node - $O(\sqrt{n})$

Based on fast sorting in clique [Lenzen, 2013]

 $D = 1: O(\log \log n)$

[Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg 2005]

 $D = 1: O(\log \log n)$

[Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg 2005]

 $D = 2: \quad O(\log n)$ $D \ge 3: \quad \Omega(\sqrt[3]{n})$

[Z. Lotker, B. Patt-Shamir, D. Peleg 2006]

 $D = 1: O(\log \log n)$

[Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg 2005]

 $D = 2: \quad O(\log n)$ $D \ge 3: \quad \Omega(\sqrt[3]{n})$

[Z. Lotker, B. Patt-Shamir, D. Peleg 2006]

We prove:

 \mathcal{CP} -MST algorithm: $O(\log^2 n)$

• Based on Boruvka's algorithm - *log n* phases

- Based on Boruvka's algorithm *log n* phases
- On each phase need to exchange many messages:

- Based on Boruvka's algorithm *log n* phases
- On each phase need to exchange many messages:
 - select min-weight outgoing edge
 - merge fragments
 - (amortized pointer jumping)

 F_1

 F_3

 F_4

 F_2

 F_6

 F_5

- Based on Boruvka's algorithm *log n* phases
- On each phase need to exchange many messages:
 - select min-weight outgoing edge
 - merge fragments
 - (amortized pointer jumping)

- We want:
 - each phase O(log n) rounds

Each node in *V* has two *officials* in *C*:

Node's **Representative** - fixed
 Fragment's **Leader** - may migrate in each phase

Each node in *V* has two *officials* in *C*:

Node's **Representative** - fixed
 Fragment's **Leader** - may migrate in each phase

Each node in *V* finds its **mwoe**

Each node in *V* has two *officials* in *C*:

Node's **Representative** - fixed
 Fragment's **Leader** - may migrate in each phase

Each node in *V* has two *officials* in *C*:

Node's **Representative** - fixed
 Fragment's **Leader** - may migrate in each phase

Each node in **V** finds its **mwoe**

All **mwoe** are delivered to **C**

Representatives send to leaders

Each node in *V* has two *officials* in *C*:

Node's **Representative** - fixed
 Fragment's **Leader** - may migrate in each phase

Each node in **V** finds its **mwoe**

All **mwoe** are delivered to **C**

Representatives send to leaders

Leaders decide on merging

Task	Running time	Lower bounds	
	on \mathcal{CP} networks	All Axioms	Any 2 Axioms
MST *	$O(\log^2 n)$	$\Omega(1)$	$ ilde{\Omega}(\sqrt[4]{n})$
Matrix transposition	O(k)	$\Omega(k)$	$\Omega(n)$
Vector by matrix multiplication	O(k)	$\varOmega(k/\log n)$	$\Omega(n/\log n)$
Matrix multiplication	$O(k^2)$	$\Omega(k^2)$	$\Omega(n/\log n)$
Find my rank	O(1)	$\Omega(1)$	$\Omega(n)$
Find median	O(1)	$\Omega(1)$	$\Omega(\log n)$
Find mode	O(1)	$\Omega(1)$	$\Omega(n/\log n)$
Find number of distinct values	O(1)	$\Omega(1)$	$\Omega(n/\log n)$
Top r ranked by areas	O(r)	arOmega(r)	$\Omega(r\sqrt{n})$

6999998

k - maximum number of nonzero entries in a row or column. * - randomized algorithm

- Axiomatic approach
- Core-periphery is fast and cost efficient network architecture
- Simple algorithms design

- Axiomatic approach
- Core-periphery is fast and cost efficient network architecture
- Simple algorithms design

- Future work:
 - What else can be computed efficiently?
 - What are the basic building blocks in distributed computing?

- Axiomatic approach
- Core-periphery is fast and cost efficient network architecture
- Simple algorithms design

- Future work:
 - What else can be computed efficiently?

• What are the basic building blocks in distributed computing?

