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• What do we want? 

• fast running times, robust, small diameter, bounded degree? 

• cost efficient: communication links, nodes memory

• Classic examples: 

• Stars 
• Cliques 
• Bounded degree Expanders
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Core-Periphery Structure

• Social networks structure     
    [Avin, Lotker, Pignolet,Turkel 2012]

• Global economy - wealthiest 
countries are well connected with 
trade and transportation routes

• P2P networks - (e.g., Skype where 
super nodes are the Core)
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Axiomatic Approach

• We define networks using axioms:  
• No concrete generative model 
• Abstract away algorithmic requirements 
• Algorithmic vs structural properties 
• Models that satisfy axioms can be proposed
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A1: Balanced Core Boundary

A3: Periphery-Core Convergecast

A2: Core Clique Emulation
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.

A1 A2 A3
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with many links to the periphery) as “ambassadors” of the core to the periphery.
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if a node is indeed an ambassador, then it must also have many links within the
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can flow efficiently from the periphery to the core. For example, it forbids the
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We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.
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of them does not imply the third.
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presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a
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n-node clique and an n−

√
n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.

O(k)
s,A s0 = sA



Algorithms for Core-Periphery Networks 

s 2 Zn

A,B 2 Zn⇥n , O(k) sparse

Matrix Operations
404 C. Avin et al.

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 
 

  

 

 

 

 
 

 

(a)

(b) (c)

...

(I) (II)

Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.

O(k2)
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.

each node knows: 
rank of its value 
mode of the values 
num of distinct values!
median

value for each node
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a
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n-node clique and an n−
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n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.

value for each node 
each value belongs to 
a specific group/area

each node knows  
top r of each area
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a
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n-node clique and an n−
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n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a
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n-node clique and an n−
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n-node line attached to some node of the clique.

each node knows: 
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mode of the values 
num of distinct values!
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Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.

value for each node 
each value belongs to 
a specific group/area

each node knows  
top r of each area

O(r)
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D = 1 : O(log log n)

D = 2 : O(log n)

[Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg 2005]

D � 3 : ⌦( 3
p
n)

[Z. Lotker, B. Patt-Shamir, D. Peleg 2006]

CP-MST algorithm: O(log

2 n)

We prove:
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• On each phase need to exchange many messages:

• We want: 
• each phase O(log n) rounds

• Based on Boruvka’s algorithm - log n phases

• select min-weight outgoing edge 
• merge fragments 

• (amortized pointer jumping)
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Each node in V has two officials in C: 1. Node’s Representative - fixed 
2. Fragment’s Leader - may migrate in each phase 

Each node in V finds its mwoe

All mwoe are delivered to C

Representatives send to leaders

Leaders decide on merging
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Table 1. Summary of algorithms for core-periphery networks

Task Running time Lower bounds
on CP networks All Axioms Any 2 Axioms

MST * O(log2 n) Ω(1) Ω̃( 4
√
n)

Matrix transposition O(k) Ω(k) Ω(n)
Vector by matrix multiplication O(k) Ω(k/ log n) Ω(n/ log n)
Matrix multiplication O(k2) Ω(k2) Ω(n/ log n)
Find my rank O(1) Ω(1) Ω(n)
Find median O(1) Ω(1) Ω(log n)
Find mode O(1) Ω(1) Ω(n/ log n)
Find number of distinct values O(1) Ω(1) Ω(n/ log n)
Top r ranked by areas O(r) Ω(r) Ω(r

√
n)

k - maximum number of nonzero entries in a row or column. * - randomized algorithm

periphery. The first property deals with the flow of information within the core.
It is guided by the key observation that to be influential, the core must be
able to accomplish fast information dissemination internally among its members.
The corresponding Axiom AE postulates that the core must be a Θ(1)-clique
emulator (to be defined formally later). Note that this requirement is stronger
than just requiring the core to possess a dense interconnection subgraph, since
the latter permits the existence of “bottlenecks”, whereas the requirement of the
axiom disallows such bottlenecks.

The second property focuses on the flow of information from the periphery to
the core and measures its efficiency. The core-periphery structure of the network
is said to be a γ-convergecaster if this data collection operation can be performed
in time γ. The corresponding Axiom AC postulates that information can flow
from the periphery nodes to the core efficiently (i.e., in constant time). Note
that one implication of this requirement is that the presence of periphery nodes
that are far away from the core, or bottleneck edges that bridge between many
periphery nodes and the core, is forbidden.

The third and last property concerns the “boundary” between the core and the
periphery and claim that core nodes are “effective ambassadors”. Ambassadors
serve as bidirectional channels through which information flows into the core and
influence flows from the core to the periphery. However, to be effective as an am-
bassador, the core node must maintain a balance between its interactions with
the “external” periphery and its interactions with the other core members, serv-
ing as its natural “support”; a core node which is significantly more connected
to the periphery than to the core becomes ineffective as a channel of influence.
In distributed computing terms, a core node that has many connections to the
periphery has to be able to distribute all the information it collected from them
to other core nodes. The corresponding Axiom AB states that the core must
have a Θ(1)-balanced boundary (to be defined formally later).

To support and justify our selection of axioms, we examine their usefulness
for effective distributed computations on core-periphery networks. We consider a
collection of different types of tasks, and show that they can be efficiently solved
on core-periphery networks, by providing a distributed algorithm for each task
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