
Distributed Computing on Core-Periphery
Networks: Axiom-Based Design⋆

Chen Avin1,⋆⋆, Michael Borokhovich1, Zvi Lotker1, and David Peleg2

1 Ben-Gurion University of the Negev, Israel
{avin,borokhom,zvilo}@cse.bgu.ac.il

2 The Weizmann Institute, Israel
david.peleg@weizmann.ac.il

Abstract. Inspired by social networks and complex systems, we propose
a core-periphery network architecture that supports fast computation for
many distributed algorithms and is robust and efficient in number of links.
Rather than providing a concrete network model, we take an axiom-based
design approach. We provide three intuitive (and independent) algorith-
mic axioms and prove that any network that satisfies all axioms enjoys an
efficient algorithm for a range of tasks (e.g., MST, sparse matrix multipli-
cation, etc.). We also show the minimality of our axiom set: for networks
that satisfy any subset of the axioms, the same efficiency cannot be guar-
anteed for any deterministic algorithm.

1 Introduction

A fundamental goal in distributed computing is designing a network architecture
that allows fast running times for various distributed algorithms, but at the same
time is cost-efficient in terms of minimizing the number of communication links
between machines and the amount of memory used by each machine.

For illustration, let’s consider three basic networks topologies: a star, a clique
and a constant degree expander. The star graph has only a linear number of
links and can compute every computable function after only one round of com-
munication. But clearly, such an architecture has two major disadvantages: the
memory requirements of the central node do not scale, and the network is not
robust. The complete graph, on the other hand, is very robust and can sup-
port extremely fast performance for tasks such as information dissemination,
distributed sorting and minimum spanning tree, to name a few [1,2,3]. Also, in
a complete graph the amount of memory used by a single processor is minimal.
But obviously, the main drawback of that architecture is the high number of
links it uses. Constant degree expanders are a family of graphs that support ef-
ficient computation for many tasks. They also have linear number of links and
can effectively balance the workload between many machines. But the diameter
of these graphs is lower bounded by Ω(log n) which implies similar lower bound
for most of the interesting tasks one can consider.

⋆ Supported in part by the Israel Science Foundation (grant 1549/13).
⋆⋆ Part of this work was done while the author was visiting ICERM, Brown university.

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 399–410, 2014.
c⃝ Springer-Verlag Berlin Heidelberg 2014

400 C. Avin et al.

A natural question is therefore whether there are other candidate topologies
with guaranteed good performance. We are interested in the best compromise
solution: a network on which distributed algorithms have small running times,
memory requirements at each node are limited, the architecture is robust to link
and node failures, and the total number of links is minimized (preferably linear).

To try to answer this question we adopt in this paper an axiomatic approach
to the design of efficient networks. In contrast to the direct approach to network
design, which is based on providing a concrete type of networks (by determinis-
tic or random construction) and showing its efficiency, the axiomatic approach
attempts to abstract away the algorithmic requirements that are imposed on the
concrete model. This allows one to isolate and identify the basic requirements
that a network needs for a certain type of tasks. Moreover, while usually the per-
formance of distributed algorithms is dictated by specific structural properties
of a network (e.g., diameter, conductance, degree, etc.), the axioms proposed
in this work are expressed in terms of desired algorithmic properties that the
network should have.

The axioms1 proposed in the current work are motivated and inspired by the
core-periphery structure exhibited by many social networks and complex sys-
tems. A core-periphery network is a network structured of two distinct groups
of nodes, namely, a large, sparse, and weakly connected group identified as the
periphery, which is loosely organized around a small, cohesive and densely con-
nected group identified as the core. Such a dichotomic structure appears in many
areas of our life, and has been observed in many social organizations including
modern social networks [4]. It can also be found in urban and even global sys-
tems (e.g., in global economy, the wealthiest countries constitute the core which
is highly connected by trade and transportation routes) [5,6,7]. There are also
peer-to-peer networks that use a similar hierarchical structure, e.g., FastTrack
[8] and Skype [9], in which the supernodes can be viewed as the core and the
regular users as the periphery.

The main technical contribution of this paper is proposing a minimal set of
simple core-periphery-oriented axioms and demonstrating that networks satisfy-
ing these axioms achieve efficient running time for various distributed computing
tasks while being able to maintain linear number of edges and limited memory
use. We identify three basic, abstract and conceptually simple (parameterized)
properties, that turn out to be highly relevant to the effective interplay between
core and periphery. For each of these three properties, we propose a correspond-
ing axiom, which in our belief captures some intuitive aspect of the desired
behavior expected of a network based on a core-periphery structure. Let us
briefly describe our three properties, along with their “real life” interpretation,
technical formulation, and associated axioms.

The three axioms are: (i) clique-like structure of the core, (ii) fast convergecast
from periphery to the core and (iii) balanced boundary between the core and

1 One may ask whether the properties we define qualify as “axioms”. Our answer
is that the axiomatic lens helps us focus attention on the fundamental issues of
minimality, independence and necessity of our properties.

Distributed Computing on Core-Periphery Networks 401

Table 1. Summary of algorithms for core-periphery networks

Task Running time Lower bounds
on CP networks All Axioms Any 2 Axioms

MST * O(log2 n) Ω(1) Ω̃(4
√
n)

Matrix transposition O(k) Ω(k) Ω(n)
Vector by matrix multiplication O(k) Ω(k/ log n) Ω(n/ log n)
Matrix multiplication O(k2) Ω(k2) Ω(n/ log n)
Find my rank O(1) Ω(1) Ω(n)
Find median O(1) Ω(1) Ω(log n)
Find mode O(1) Ω(1) Ω(n/ log n)
Find number of distinct values O(1) Ω(1) Ω(n/ log n)
Top r ranked by areas O(r) Ω(r) Ω(r

√
n)

k - maximum number of nonzero entries in a row or column. * - randomized algorithm

periphery. The first property deals with the flow of information within the core.
It is guided by the key observation that to be influential, the core must be
able to accomplish fast information dissemination internally among its members.
The corresponding Axiom AE postulates that the core must be a Θ(1)-clique
emulator (to be defined formally later). Note that this requirement is stronger
than just requiring the core to possess a dense interconnection subgraph, since
the latter permits the existence of “bottlenecks”, whereas the requirement of the
axiom disallows such bottlenecks.

The second property focuses on the flow of information from the periphery to
the core and measures its efficiency. The core-periphery structure of the network
is said to be a γ-convergecaster if this data collection operation can be performed
in time γ. The corresponding Axiom AC postulates that information can flow
from the periphery nodes to the core efficiently (i.e., in constant time). Note
that one implication of this requirement is that the presence of periphery nodes
that are far away from the core, or bottleneck edges that bridge between many
periphery nodes and the core, is forbidden.

The third and last property concerns the “boundary” between the core and the
periphery and claim that core nodes are “effective ambassadors”. Ambassadors
serve as bidirectional channels through which information flows into the core and
influence flows from the core to the periphery. However, to be effective as an am-
bassador, the core node must maintain a balance between its interactions with
the “external” periphery and its interactions with the other core members, serv-
ing as its natural “support”; a core node which is significantly more connected
to the periphery than to the core becomes ineffective as a channel of influence.
In distributed computing terms, a core node that has many connections to the
periphery has to be able to distribute all the information it collected from them
to other core nodes. The corresponding Axiom AB states that the core must
have a Θ(1)-balanced boundary (to be defined formally later).

To support and justify our selection of axioms, we examine their usefulness
for effective distributed computations on core-periphery networks. We consider a
collection of different types of tasks, and show that they can be efficiently solved
on core-periphery networks, by providing a distributed algorithm for each task

402 C. Avin et al.

and bounding its running time. Moreover, for each task we argue the necessity of
all three axioms, by showing that if at least one of the axioms is not satisfied by
the network under consideration, then the same efficiency can not be guaranteed
by any algorithm for the given task.

Table 1 provides an overview of the main tasks we studied along with the upper
and lower bounds on the running time when the network satisfies our axioms and
a worst case lower bound on the time required when at least one of the axioms
is not satisfied. For each task we provide an algorithm and prove formally its
running time and the necessity of the axioms. As it turns out, some of the
necessity proofs make use of an interesting connection to known communication
complexity results.

The most technically challenging part of the paper is the distributed construc-
tion of a minimum-weight spanning tree (MST), a significant task in both the
distributed systems world (cf.[10,11,12]) and the social networks world [13,14,15].
Thus, the main algorithmic result of the current paper is proving that MST can
be computed efficiently (in O(log2 n) rounds) on core-periphery networks. To
position this result in context we recall that for the complete graph G = Kn,
an MST can be constructed distributedly in O(log logn) time [1]. For the wider
class of graphs of diameter at most 2, this task can still be performed in time
O(log n). In contrast, taking the next step, and considering graphs of diameter
3, drastically changes the picture, as there are examples of such graphs for which
any distributed MST construction requires Ω (4

√
n) time [16].

The rest of the paper is organized as follows. Section 2 formally describes core-
periphery networks, the axioms and their basic structural implications. Section
3 provides an overview on the MST algorithm and Section 4 an overview on the
rest of the task we study. Due to lack of space we defer many of the technical
details and proofs to the report [17].

2 Axiomatic Design for Core-Periphery Networks

Preliminaries. Let G(V,E) denote our (simple, undirected) network, where V
is the set of nodes, |V | = n, and E is the set of edges, |E| = m. The network can
be thought of as representing a distributed system. We assume the synchronous
CONGEST model (cf. [12]), where communication proceeds in rounds and in
each round each node can send a message of at most O(log n) bits to each of its
neighbors. Initially each node has a unique ID of O(log n) bits.

For a node v, let N(v) denote its set of neighbors and d(v) = |N(v)| its
degree. For a set S ⊂ V and a node v ∈ S, let Nin(v, S) = N(v) ∩ S denote its
set of neighbors within S and denote the number of neighbors of v in the set
S by din(v, S) = |Nin(v, S)|. Analogously, let Nout(v, S) = N(v) ∩ V \ S denote
v’s set of neighbors outside the set S and let dout(v) = |Nout(v, S)|. For two
subsets S, T ⊆ V , let ∂(S, T) be the edge boundary (or cut) of S and T , namely
the set of edges with exactly one endpoint in S and one in T and |∂(S, T)| =∑

v∈S |Nout(v, S) ∩ T |. Let ∂(S) denote the special case where T = V \ S.

Distributed Computing on Core-Periphery Networks 403

Core-Periphery Networks. Given a network G(V,E), a ⟨C,P⟩-partition is a
partition of the nodes of V into two sets, the core C and the periphery P . Denote
the sizes of the core and the periphery by nC and nP respectively. To represent
the partition along with the network itself, we denote the partitioned network
by G(V,E, C,P).

Intuitively, the core C consists of a relatively small group of strong and highly
connected machines designed to act as central servers, whereas the periphery P
consists of the remaining nodes, typically acting as clients. The periphery ma-
chines are expected to be weaker and less well connected than the core machines,
and they may perform much of their communication via the dense interconnec-
tion network of the core. In particular, a central component in many of our
algorithms for various coordination and computational tasks is based on assign-
ing each node v a representative core node r(v), essentially a neighbor acting as a
“channel” between v and the core. The representative chosen for each periphery
node is fixed.

For a partitioned network to be effective, the ⟨C,P⟩ partition must possess
certain desirable properties. In particular, a partitioned network G(V,E, C,P) is
called a core-periphery network, or CP-network for short, if the ⟨C,P⟩-partition
satisfies three properties, defined formally later on in the form of three axioms.

Core-periphery Properties and Axioms. We first define certain key param-
eterized properties of node groups in networks that are of particular relevance to
the relationships between core and periphery in our partitioned network archi-
tectures. We then state our axioms, which capture the expected behavior of those
properties in core-periphery networks, and demonstrate their independence and
necessity. Our three basic properties are:

α-Balanced Boundary. A subset of nodes S is said to have an α-balanced
boundary iff dout(v,S)

din(v,S)+1 = O(α) for every node v ∈ S.

β-Clique Emulation. The task of clique emulation on an n-node graph G
involves delivering a distinct message Mv,w from v to w for every pair of nodes
v, w in V (G). An n-node graph G is a β-clique-emulator if it is possible to
perform clique emulation on G within β rounds (in the CONGEST model).

γ-convergecast. For S, T ⊆ V , the task of ⟨S, T ⟩-convergecast on a graph G
involves delivering |S| distinct messages Mv, originated at the nodes v ∈ S, to
some nodes in T (i.e., each message must reach at least one node in T). The sets
S, T ⊂ V form a γ-convergecaster if it is possible to perform ⟨S, T ⟩-convergecast
on G in γ rounds (in the CONGEST model).

Consider a partitioned network G(V,E, C,P). We propose the following set of
axioms concerning the core C and periphery P .

AB. Core Boundary. The core C has a Θ(1)-balanced boundary.

AE . Clique Emulation. The core C is a Θ(1)-clique emulator.

AC . Periphery-Core Convergecast. The periphery P and the core C form
a Θ(1)-convergecaster.

404 C. Avin et al.

(a)

(b) (c)

...

(I) (II)

Fig. 1. (I) An example for a 36-node CP-network that satisfies all three axioms. The 6
core nodes (in gray) are connected in clique. In this example every core node is also an
ambassadors with equal number of edges to the core and outside from the core. The core
and periphery form a convergecaster since the periphery can send all its information to
the core in one round. (II) Networks used in proofs: (a) The lollipop partitioned network
L25. (b) The sun partitioned network S16. (c) The dumbbell partitioned network D16 .

Let us briefly explain the axioms. Axiom AB talks about the boundary be-
tween the core and periphery. Think of core nodes with a high out-degree (i.e.,
with many links to the periphery) as “ambassadors” of the core to the periphery.
Axiom AB states that while not all nodes in the core must serve as ambassadors,
if a node is indeed an ambassador, then it must also have many links within the
core. Axiom AE talks about the flow of information within the core, and postu-
lates that the core must be dense, and in a sense behave almost like a complete
graph: “everyone must know everyone else”. The clique-emulation requirement
is actually stronger than just being a dense subgraph, since the latter permits
the existence of bottlenecks nodes, which a clique-emulator must avoid. Axiom
AC also concerns the boundary between the core and periphery, but in addition
it refers also to the structure of the periphery. It postulates that information
can flow efficiently from the periphery to the core. For example, it forbids the
presence of periphery nodes that are far away from the core, or bottleneck edges
that bridge between many periphery nodes and the core. Fig. 1 (I) provides an
example for CP-network satisfying the three axioms.

We next show that the axioms are independent. Later, we prove the necessity
of the axioms for the efficient performance of a variety of computational tasks.

Theorem 1. Axioms AB , AE, AC are independent, namely, assuming any two
of them does not imply the third.

We prove this theorem by considering three examples of partitioned networks,
described next, each of which satisfies two of the axiomes but not the third (hence
they are not CP-networks), implying independence.

The lollipop partitioned network Ln: (Fig. 1 (II)(a) The lollipop graph consists
of a

√
n-node clique and an n−

√
n-node line attached to some node of the clique.

Distributed Computing on Core-Periphery Networks 405

Set the core C to be the clique and the periphery P to be the line. Observe that
Axioms AE and AB hold but AC is not satisfied since the long line will require
linear time for periphery to core convergcast.

The sun partitioned network Sn: (Fig. 1 (II)(b)) The sun graph consists of an
n/2-node cycle with an additional leaf node attached to each cycle node. Set the
core C to be the cycle and the periphery P to contain the n/2 leaves. Axioms AC

and AB hold but Axiom AE does not, since the distance between diametrically
opposing nodes in the cycle is n/4, preventing fast clique emulation.

The dumbbell partitioned network Dn: (Fig. 1 (II)(c)) The dumbbell graph is
composed of two stars, each consisting of a center node connected to n/2 − 1
leaves, whose centers are connected by an edge. Set the core C to be the two
centers, and the periphery P to contain all the leaves. Then Axioms AE and AC

hold while Axiom AB does not.

Structural Implications of the Axioms. The axioms imply a number of
simple properties of the network structure.

Theorem 2. If G(V,E, C,P) is a core-periphery network (i.e., it satisfies Ax-
ioms AB , AE and AC), then the following properties hold:

1. The size of the core satisfies Ω(
√
n) ≤ nC ≤ O(

√
m).

2. Every node v in the core satisfies dout(v, C) = O(nC) and din(v, C) = Ω(nC).
3. The number of outgoing edges from the core is |∂(C)| = Θ(n2

C).
4. The core is dense, i.e., the number of edges in it is

∑
v∈C din(v, C) = Θ(n2

C).

Proof. Axiom AE necessitates that the inner degree of each node v is din(v, C) =
Ω(nC) (or else it would not be possible to complete clique emulation in constant
time), implying the second part of claim 2. It follows that the number of edges
in the core is

∑
v∈C din(v, C) = Θ(n2

C), hence it is dense; claim 4 follows. Since
also

∑
v∈C din(v, C) ≤ 2m, we must have the upper bound of claim 1, that is,

nC = O(
√
m). Axiom AB yields that for every v, dout(v, C) = O(nC), so the first

part of claim 2 follows. Note that |∂(C)| =
∑

v∈C dout(v, C) = O(n2
C), so the upper

bound of claim 3 follows. To give a lower bound on nC, note that by Axiom AC

we have |∂(C)| = Ω(n − nC) (otherwise the information from the n − nC nodes
of P could not flow in O(1) time to C), so nC = Ω(

√
n) and the lower bounds of

claims 1 and 3 follow. !

An interesting case for efficient networks is where the number of edges is linear
in the number of nodes. In this case we have the following corollary.

Corollary 1. In a core-periphery network where m = O(n), the following prop-
erties hold:

1. The size of the core satisfies nC = Θ(
√
n)

2. The number of outgoing edges from the core is |∂(C)| = Θ(n).
3. The number of edges in the core is

∑
v∈C din(v, C) = Θ(n).

Now we show a key property relating our axioms to the network diameter.

406 C. Avin et al.

Claim 1. If the partitioned network G(V,E, C,P) satisfies Axioms AE and AC

then its diameter is Θ(1).

The following claim shows that the above conditions are necessary.

Claim 2. For X ∈ {E,C}, there exists a family of n-node partitioned networks
GX(V,E, C,P) of diameter Ω(n) that satisfy all axioms except AX .

3 MST on a Core-Periphery Network

In this section we present a time-efficient randomized distributed algorithm for
computing a minimum-weight spanning tree (MST) on a core-periphery net-
work. In particular, we consider an n-node core periphery network G(V,E, C,P),
namely, a partitioned network satisfying all three axioms, and show that an MST
can be distributedly computed on such a network in O(log2 n) rounds with high
probability. Upon termination, each node knows which of its edges belong to the
MST. Formally, we state the following theorem.

Theorem 3. On a CP-network G(V,E, C,P), Algorithm CP-MST constructs
an MST in O(log2 n) rounds with high probability.

We also show that Axioms AB, AE , and AC are indeed necessary for our
distributed MST algorithm to be efficient.

Theorem 4. For each X ∈ {B,E,C} there exists a family FX = {GX(V,E,
C,P)(n)} of partitioned networks that do not satisfy Axiom AX but satisfy the
other two axioms, and the time complexity of any distributed MST algorithm on
FX (as a function of the network size n) is Ω(nαX) for some constant αX > 0.

The formal proof of Theorem 4 can be found in [17], but the idea of the proof
is as following. For each case of Theorem 4 we show a graph in which, for a
certain weight assignment, there exist two nodes s and r such that in order to
decide which of the edges incident to r belong to the MST, it is required to know
the weights of all the edges incident to s. Thus, at least deg(s) (i.e., degree of s)
messages have to be delivered from s to r in order to complete the MST task,
which implies a lower bound on any distributed MST algorithm.

Now let us give a high level description of the algorithm. Our CP-MST algo-
rithm is based on Boruvka’s MST algorithm [18], and runs in O(log n) phases,
each consisting of several steps. The algorithm proceeds by maintaining a forest
of tree fragments (initially singletons), and merging fragments until the forest
converges to a single tree. Throughout the execution, each node has two officials,
namely, core nodes that represent it. In particular, recall that each node v is as-
signed a representative core neighbor r(v) passing information between v and
the core. In addition, v is also managed by the leader l(i) of its current fragment
i. An important distinction between these two roles is that the representative of
each node is fixed, while its fragment leader may change in each phase (as its
fragment grows). At the beginning of each phase, every node knows the IDs of

Distributed Computing on Core-Periphery Networks 407

its fragment and its leader. Then, every node finds its minimum weight outgoing
edge, i.e., the edge with the second endpoint belonging to the other fragment
and having the minimum weight. This information is delivered to the core by the
means of the representative nodes, which receive the information, aggregate it
(as much as possible) and forward it to the leaders of the appropriate fragments.
The leaders decide on the fragment merging and inform all the nodes about new
fragments IDs.

The correctness of the algorithm follows from emulating Boruvka’s algorithm
and the correctness of the fragments merging procedure, described in the techni-
cal report [17]. The main challenges in obtaining the proof were in bounding the
running time, which required careful analysis and observations. There are two
major sources of problems that can cause delays in the algorithm. The first in-
volves sending information between officials (representatives to leaders and vice
versa). Note that there are only O(

√
m) officials, but they may need to send

information about m edges, which can lead to congestion. For example, if more
than α ·

√
m messages need to be sent to an officials of degree

√
m, then this

will take at least α rounds. We use randomization of leaders and the property
of clique emulation to avoid this situation and make sure that officials do not
have to send or receive more than O(

√
m logm) messages in a phase. The sec-

ond source for delays is the fragments merging procedure. This further splits
into two types of problems. The first is that a chain of fragments that need to
be merged could be long, and in the basic distributed Boruvka’s algorithm will
take long time (up to n) to resolve. This problem is overcome by using a mod-
ified pointer jumping technique similar to [16]. The second problem is that the
number of fragments that need to be merged could be large, resulting in a large
number of merging messages that contain, for example, the new fragment ID.
This problem is overcome by using randomization and by reducing the number
of messages needed for resolving a merge. Full description of the algorithm along
with the proofs of correctness and running time can be found in [17].

4 Additional Algorithms in Core-Periphery Networks

In addition to MST, we have considered a number of other distributed problems
of different types, and developed algorithms for these problems that can be ef-
ficiently executed on core-periphery networks. In particular, we dealt with the
following set of tasks related to matrix operations. (M1) Sparse matrix transpo-
sition. (M2) Multiplication of a sparse matrix by a vector. (M3) Multiplication
of two sparse matrices.

We then considered problems related to calculating aggregate functions of
initial values initially stored one at each node in V . In particular, we developed
efficient algorithms for the following problems. (A1) Finding the rank of each
value, assuming the values are ordered. (As output, each node should know the
rank of the element it stores.) (A2) Finding the median of the values. (A3)
Finding the (statistical) mode, namely, the most frequent value. (A4) Finding
the number of distinct values stored in the network. Each of these problems

408 C. Avin et al.

requires Ω(Diam) rounds on general networks, whereas on a CP-network it can
be performed in O(1) rounds.

An additional interesting task is defined in a setting where the initial values
are split into disjoint groups, and requires finding the r largest values of each
group. This task can be used, for example, for finding the most popular headlines
in each area of news. Here, there is an O(r) round solution on a CP-network,
whereas in general networks the diameter is still a lower bound.

In all of these problems, we also establish the necessity of all 3 axioms, by
showing that there are network families satisfying 2 of the 3 axioms for which
the general lower bound holds. Due to space limitation, we discuss in this section
only one of these problems, namely, multiplication of a vector by a sparse matrix.
Our results for the other problems can be found in [17].

A few definitions are in place. LetA be a matrix in which each entry A(i, j) can
be represented by O(log n) bits (i.e., it fits in a single message in the CONGEST
model). Denote by Ai,∗ (respectively, A∗,i) the ith row (resp., column) of A.
Denote the ith entry of a vector s by s(i). We assume that the nodes in C have
IDs [1, . . . , nC] and this is known to all of them. A square n× n matrix A with
O(k) nonzero entries in each row and each column is hereafter referred to as an
O(k)-sparse matrix.

Let s be a vector of size n and A be a square n × n O(k)-sparse matrix.
Initially, each node in V holds one entry of s (along with the index of the entry)
and one row of A (along with the index of the row). The task is to distributively
calculate vector s′ = sA and store its entries at the corresponding nodes in V ,
such that the node that initially stored s(i) will store s′(i). We start with a claim
on the lower bound (the proof can be found in [17]).

Claim 3. The lower bound for any algorithm for multiplication of a vector by
a sparse matrix on any network is Ω(D), and on a CP-network is Ω(k/ logn).

Algorithm 1. The following algorithm solves the task in O(k) rounds on a
CP-network G(V,E, C,P).

1. Each u ∈ V sends the entry of s it has (along with the index of the entry)
to its representative r(u) ∈ C (recall that if u ∈ C then r(u) = u).

2. C nodes redistribute the s entries among them so that the node with ID i
stores indices [1 + (n/nC)(i− 1), . . . , (n/nC)i] (assume n/nC is integer).

3. Each u ∈ V sends the index of the row of A it has to r(u) ∈ C.
4. Each representative requests the s(i) entries corresponding to rows Ai,∗ that

it represents from the C node storing it.
5. Each representative gets the required elements of s and sends them to the

nodes in P it represents.
6. Each u ∈ V sends the products {A(i, j)s(i)}nj=1 to its representative.
7. Each representative sends each nonzero value A(i, j)s(i) it has (up to O(knC)

values) to the representative responsible for s(j), so it can calculate s′(j).
8. Now, each node u ∈ V that initially stored s(i), requests s′(i) from its

representative. The representative gets the entry from the corresponding
node in C and sends it back to u.

Distributed Computing on Core-Periphery Networks 409

We state the following results regarding the running time of Algorithm 1.

Theorem 5. On a CP-network G(V,E, C,P), the multiplication of a O(k)-
sparse matrix by a vector can be completed in O(k) rounds w.h.p.

Before we start with the proof, we present the following theorem from [2].

Theorem 6 ([2]). Consider a fully connected system of nC nodes. Each node
is given up to Ms messages to send, and each node is the destination of at
most Mr messages. There exists algorithm that delivers all the messages to their

destinations in O
(

Ms+Mr
nC

)
rounds w.h.p.

This theorem will be extensively used by our algorithms since it gives running
time bound on messages delivery in a core that satisfies Axiom AE . The result of
the theorem holds with high probability which implies that it exploits a random-
ized algorithm. Nevertheless, our algorithms can be considered deterministic in
the sense that all the decisions they make are deterministic. The randomness of
the information delivery algorithm of Theorem 6 does not affect our algorithms
since the decisions when and what message will be sent along with the message
source and destination, are deterministically controlled by our algorithms.

Proof of Theorem 5. Consider Algorithm 1 and the CP-network G(V,E, C,P).
At Step 1, due to AB and AC , each representative will obtain O(nC) entries of s
in O(1) rounds. For Step 2, we use Theorem 6 with the parameters: Ms = O(nC)
andMr = O(n/nC), and thus such a redistribution will takeO((nC+n/nC)/nC) =
O(1) rounds. At Step 3, due to AB and AC each representative will obtain O(nC)
row indices of A in O(1) rounds.

For Step 4, we again use Theorem 6 with the parameters:Ms = O(nC) (indices
of rows each representative has), Mr = O(n/nC) (number of entries of s stored in
each node in C), and obtain the running time for this step: O((nC +n/nC)/nC) =
O(1) rounds. At Step 5, each representative gets the required elements of s which
takes running time is O(1) due to Theorem 6, and then sends them to the nodes
in P it represents which also takes O(1) due to AC . Step 6 takes O(k) rounds
since A has up to k nonzero entries in each row. Step 7 again uses Theorem 6
with parameters Ms = O(knC), Mr = O(n/nC), and thus the running time is
O(kn/n2

C) = O(k).
At Step 8, a single message is sent by each node to its representative (takes

O(1) due to AC), then the requests are delivered to the appropriate nodes in
C and the replies with the appropriate entries of s′ are received back by the
representatives. All this takes O(1) rounds due to the Axiom AE and Theorem
6. Then the entries of s′ are delivered to the nodes that have requested them.
Due to AC this will also take O(1) rounds. !

The following theorem shows the necessity of the axioms for achieving O(k)
running time. The proof of the theorem can be found in [17].

Theorem 7. For each X ∈ {B,E,C} there exist a family FX = {GX(V,E,
C,P)(n)} of partitioned networks that do not satisfy AxiomAX but satisfy the other

410 C. Avin et al.

two axioms, and input matrices of size n×n and vectors of size n, for every n, such
that the time complexity of any algorithm for multiplying a vector by a matrix on
the networks of FX with the corresponding-size inputs is Ω(n/ logn).

References

1. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree
construction in o(log log n) communication rounds. SIAM J. Computing 35(1),
120–131 (2005)

2. Lenzen, C., Wattenhofer, R.: Tight bounds for parallel randomized load balancing.
In: STOC, pp. 11–20 (2011)

3. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
PODC, pp. 42–50 (2013)

4. Avin, C., Lotker, Z., Pignolet, Y.A., Turkel, I.: From caesar to twitter: An ax-
iomatic approach to elites of social networks. CoRR abs/1111.3374 (2012)

5. Fujita, M., Krugman, P.R., Venables, A.J.: The spatial economy: Cities, regions,
and international trade. MIT Press (2001)

6. Krugman, P.: Increasing Returns and Economic Geography. The Journal of Polit-
ical Economy 99(3), 483–499 (1991)

7. Holme, P.: Core-periphery organization of complex networks. Physical Review E 72,
46111 (2005)

8. Liang, J., Kumar, R., Ross, K.W.: The fasttrack overlay: A measurement study.
Computer Networks 50, 842 (2006)

9. Baset, S., Schulzrinne, H.: An analysis of the skype peer-to-peer internet telephony
protocol. In: INFOCOM, pp. 1–11 (2006)

10. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. McGraw-Hill (1998)

11. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1995)
12. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
13. Adamic, L.: The small world web. Research and Advanced Technology for Digital

Libraries, 852–852 (1999)
14. Bonanno, G., Caldarelli, G., Lillo, F., Mantegna, R.: Topology of correlation-based

minimal spanning trees in real and model markets. Phys. Rev. E 68 (2003)
15. Chen, C., Morris, S.: Visualizing evolving networks: Minimum spanning trees versus

pathfinder networks. In: INFOVIS, pp. 67–74 (2003)
16. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diameter

graphs. Distributed Computing 18(6), 453–460 (2006)
17. Avin, C., Borokhovich, M., Lotker, Z., Peleg, D.: Distributed computing on core-

periphery networks: Axiom-based design. CoRR abs/1404.6561 (2014)
18. Nesetril, J., Milkova, E., Nesetrilova, H.: Otakar boruvka on minimum spanning

tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics 233(1-3), 3–36 (2001)

