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The Perron–Frobenius (PF) theorem provides a simple characterization of the eigenvectors 
and eigenvalues of irreducible nonnegative square matrices. A generalization of the 
PF theorem to nonsquare matrices, which can be interpreted as representing systems with 
additional degrees of freedom, was recently presented in [1]. This generalized theorem 
requires a notion of irreducibility for nonsquare systems. A suitable definition, based on 
the property that every maximal square (legal) subsystem is irreducible, is provided in 
[1], and is shown to be necessary and sufficient for the generalized theorem to hold. This 
note shows that irreducibility of a nonsquare system can be tested in polynomial time. 
The analysis uses a graphic representation of the nonsquare system, termed the constraint 
graph, representing the flow of influence between the constraints of the system.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Perron–Frobenius (PF) theorem is stated for irre-
ducible nonnegative square matrices, and provides a sim-
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ple characterization of their eigenvectors and eigenvalues. 
This characterization is applicable in many fields of science 
and engineering, including dynamical systems theory, eco-
nomics, statistics and optimization. However, many real-
life scenarios give rise to nonsquare matrices. For example, 
the Power control problem in Multiple Input Single Output 
(MISO) systems [5] has a natural algebraic formulation us-
ing nonsquare matrices. In such systems, a set of multiple 
synchronized transmitters, located at different places, can 
transmit at the same time to the same receiver and hence 
the total number of transmitters m might be strictly larger 
than the total number of receivers n, leading to n ×m non-
square systems [2].

The question of whether the PF theorem (along with 
its applications) can be generalized to a nonsquare set-
ting calls for extending central notions of the spectral the-
ory, such as eigenvectors, eigenvalues and spectral ratio, 
to a nonsquare setting. This question has been recently 
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addressed by [1], where such a generalization was pre-
sented, giving rise to the following optimization problem, 
in which the matrices M+, M− ∈ R

n×m are nonsquare 
matrices for m ≥ n:

maximize β

subject to: M− · X ≤ 1/β ·M+ · X,

‖X‖1 = 1, X ≥ 0. (1)

The nonsquare PF system L = 〈M+, M−〉 of nonsquare 
matrices M+, M− is interpreted as representing some 
additional freedom given to the system designer. In this 
setting, each row entity has several columns affectors, re-
ferred to as its supporters, which can cooperate in serving 
it while potentially repressing the others. The task is to find 
the best way to organize the cooperation between the sup-
porters of each entity.

An important component in the generalized PF theorem 
of [1] is the extension of spectral theory concepts to a non-
square system L = 〈M+, M−〉. This extension defines the 
spectrum of L based on the spectra of all maximal legal
square subsystems “hidden” within L. (A “hidden” square 
subsystem is legal if each row entity i selects exactly one 
column entity j such that M+(i, j) > 0 and in addition 
the selections of all row entities are distinct, as will be 
explained formally later.) For example, the spectral ratio of 
the nonsquare system L is defined as the minimal spectral 
ratio of all legal square systems “hidden” in L.

Another central notion in the generalized PF theorem is 
the irreducibility of a nonsquare system. A suitable defini-
tion is provided in [1], based on the property that every 
maximal square and legal subsystem hidden in L is ir-
reducible. This approach has been shown in [1] to yield 
nonsquare systems with properties similar to those of a 
square system with respect to the Collatz–Wielandt prop-
erty, which provides the algorithmic power for the PF the-
orem. Moreover, it is shown that this irreducibility require-
ment is both necessary and sufficient for the generalized 
theorem to hold.

Note, however, that since there could be exponentially 
many legal square subsystems in a given nonsquare system 
L, it is not a priori clear if one can check that L is irre-
ducible in polynomial time. In this note we address this is-
sue using a representation called the constraint graph of the 
system, whose vertices are the n constraints (one per en-
tity) and whose edges represent direct influence between 
the constraints. For a square system, irreducibility is equiv-
alent to the constraint graph being strongly connected, but 
for nonsquare systems the situation is more delicate. Al-
though the matrices are not square, the constraint graph is 
well-defined and provides a valuable square representation 
of the nonsquare system (i.e., the adjacency matrix of the 
graph). We present a polynomial time algorithm for test-
ing irreducibility of the system, which exploits the proper-
ties of the constraint graph. In other words, we show that 
one can verify in polynomial time that every square sys-
tem hidden in the nonsquare system is irreducible. Since 
irreducibility of nonsquare systems is a sufficient and nec-
essary condition for the generalized PF theorem of [1], our 
algorithm provides an efficient way to test whether this 
theorem applies for a particular nonsquare system.
Despite the extensive development of spectral theories 
for square matrices, the generalization of key spectral con-
cepts such as eigenvector or spectral ratio to the nonsquare 
setting has been less well-studied. There are several pos-
sible alternative definitions for eigenvalues in nonsquare 
matrices. A pioneering generalization of the PF theorem to 
nonsquare systems, given in [7], applies to a setting in-
volving a pair of nonsquare “pencil” matrices A, B ∈ R

n×m , 
where the term “pencil” refers to the expression A − λ · B , 
for complex λ ∈ C. Of special interest here are the values 
that reduce the pencil rank, namely, the λ values satisfy-
ing (A − λB) · X = 0 for some nonzero X . This problem is 
known as the generalized eigenvalue problem [7,4,3,6], which 
can be stated as follows: Given matrices A, B ∈ R

n×m , find 
a vector X 	= 0, λ ∈ C, so that A · X = λB · X . The com-
plex number λ is said to be an eigenvalue of A relative to 
B iff A X = λ · B · X for some nonzero X and X is called 
the eigenvector of A relative to B . The set of all eigenvalues 
of A relative to B is called the spectrum of A relative to B , 
denoted by sp(AB). Using the above definition, [7] charac-
terized the relation between A and B required to estab-
lish their PF property, i.e., guarantee that the generalized 
eigenpair is nonnegative. As explained before, the approach 
taken in [1] is different. The spectral notions of eigenval-
ues, eigenvectors as well as the notion of irreducibility are 
adapted to the nonsquare setting by treating the nonsquare 
system as an ensemble of hidden square systems on which 
the standard measures applies.

Another example for defining a property π of nonsquare
matrices based on demanding that every square hidden 
matrix satisfies property π ′ involves the notion of totally 
unimodular matrices. Since the determinant function is de-
fined only for square matrices, the “extension” to the non-
square setting involves testing the subsquare matrices of 
the nonsquare matrix. Hence a (nonsquare) matrix A is 
totally unimodular if each square submatrix of A has deter-
minant equal to 0, +1, or −1. Indeed, total unimodularity 
of matrices has been turned out to form an important tool 
in studying integer vectors in polyhedron due to the fact 
that the vertex set of the polyhedron P = {x|Ax ≤ b} is 
an integer vector. A polynomial time tester for totally uni-
modularity is given in [8]. Here, too, since there could be 
exponentially many such square subsystems, it is not a pri-
ori clear if one can check it in polynomial time. In this note 
such polynomial time tester for irreducibility is provided.

2. Preliminaries

Consider a directed graph G = (V , E). A subset of the 
vertices W ⊆ V is called a strongly connected component if 
G contains a directed path from v to u for every v, u ∈ W . 
G is said to be strongly connected if V is a strongly con-
nected component.

Throughout, vector and matrix inequalities are inter-
preted in the component-wise sense. A matrix A is pos-
itive (respectively, nonnegative) if all its entries are pos-
itive. Let A ∈ R

n×n be a square matrix. A is irreducible
if for every i and j, there exists a natural ki, j such that 
(Aki, j )i, j > 0. An alternative definition to irreducibility can 
be given by considering the directed graph G A = (V , E)

where V = {1, . . . , n} and (i, j) ∈ E iff Ai, j 	= 0. (I.e., A
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with all nonzero entries changed to 1 is the adjacency 
matrix of G A .) Then, A is irreducible iff G A is strongly con-
nected.

The nonsquare PF framework consists of a set V =
{v1, . . . , vn} of entities whose growth is regulated by a set 
of affectors A = {A1, A2, . . . , Am}, for some m ≥ n. As part 
of the solution, we set each affector to be either passive
or active. If an affector A j is set to be active, then it af-
fects each entity vi , by either increasing or decreasing it 
by a certain amount, denoted g(i, j) (which is specified as 
part of the input). If g(i, j) > 0 (resp., g(i, j) < 0), then 
A j is referred to as a supporter (resp., repressor) of vi . 
For clarity we may write g(vi, A j) for g(i, j). The affector-
entity relation is described by two matrices, the supporters 
gain matrix M+ ∈ R

n×m and the repressors gain matrix 
M− ∈ R

n×m , given by

M+(i, j) =
{

g(vi,A j), if g(vi,A j) > 0;
0, otherwise,

M−(i, j) =
{−g(vi,A j), if g(vi,A j) < 0;

0, otherwise.

A system is given by L = 〈M+, M−〉, where M+, M− ∈
R

m×n
≥0 , n = |V| and m = |A|. The supporter (resp., repres-

sor) set of vi is denoted by

Si(L) = {
A j

∣∣ M+(vi,A j) > 0
}

and

Ri(L) = {
A j

∣∣ M−(vi,A j) > 0
}
.

When L is clear from context, we may omit it and simply 
write Ri and Si . Throughout, we restrict attention to sys-
tems in which |Si | ≥ 1 for every vi ∈ V . A system is square
if m = n. If m > n it is nonsquare.

To define irreducibility for a nonsquare PF system L, 
we first present the notion of a selection matrix. A selec-
tion matrix F ∈ {0, 1}m×n is legal for L iff for every entity 
vi ∈ V there exists exactly one supporter A j ∈ Si such that 
F ( j, i) = 1. In other words, the sum of each column is 1. 
Such a matrix F can be thought of as representing a selec-
tion performed on Si by each entity vi , picking exactly one 
of its supporters. Since every supporter is also a repres-
sor of some other entity it holds that A = ⋃

i Si = ⋃
i Ri . 

It follows that |A| = |V| = n, the number of active affec-
tors becomes equal to the number of entities, resulting in 
a square system. Denote the family of legal selection ma-
trices, capturing the ensemble of all square systems hidden 
in L, by

F(L) = {F | F is legal for L}. (2)

Let L(F ) be the square system corresponding to the legal 
selection matrix F , namely, L(F ) = 〈M+ · F , M− · F 〉.

A square system L = 〈M+, M−〉 is irreducible iff 
(a) M+ is nonsingular and (b) M− is irreducible. A non-
square system L′ is irreducible iff L′(F ) is irreducible for 
every selection matrix F ∈ F . The following corollary is 
from [1].

Corollary 2.1. In an irreducible system L, Si ∩S j = ∅ for every 
vi, v j .
The constraint graph provides a graph-theoretic char-
acterization of irreducible systems. Let CGL(V, E) be the 
constraint graph for system L, defined by including in E a 
directed edge ei, j from vi to v j iff Si ∩ R j 	= ∅. Note that 
for a legal selection matrix F , the constraint graph CGL(F )

is a subgraph of CGL , and moreover, CGL = ⋃
F∈F CGL(F ) .

3. Algorithm for testing irreducibility

In this section, we provide a polynomial-time algorithm 
for testing the irreducibility of a given nonnegative sys-
tem L. Note that if L is a square system, then irreducibility 
can be tested in a straightforward manner by checking that 
M− is irreducible and that M+ is nonsingular.

However, recall that a nonsquare system L is irre-
ducible iff every hidden square system L(F ), F ∈ F , is 
irreducible. Since F might be exponentially large, a brute-
force testing of L(F ) for every F is too costly, hence an-
other approach is needed. Before presenting the algorithm, 
we provide some notation. For a digraph D , denote the 
set of incoming neighbors of a node vk by Γ in(vk, D) =
{v j | e j,i ∈ E(D)}. The incoming neighbors of a set of nodes 
V ′ ∈ V is denoted Γ in(V ′, D) = ⋃

vk∈V ′ Γ in(vk, D).

Algorithm description To test irreducibility, Algorithm Irr_
Test (see Fig. 1) must verify that the constraint graph 
CGL(F ) of every F ∈ F is strongly connected. The algo-
rithm consists of at most n − 1 rounds. In round t , it is 
given as input a partition Ct = {Ct

1, . . . , C
t
kt

} of V into kt

disjoint clusters such that 
⋃

i Ct
i = V . For round t = 0, the 

input is a partition C0 = {C0
1, . . . , C0

n} of the entity set V
into n singleton clusters C0

i = {vi}. The output at round 
t is a coarser partition Ct+1, in which at least two clus-
ters of Ct were merged into a single cluster in Ct+1. The 
partition Ct+1 is formed as follows. The algorithm first 
forms a graph Dt = (Ct , Et) on the clusters of the input 
partition Ct , treating each cluster Ct

i ∈ Ct as a node, and 
including in Et a directed edge (i, j) from Ct

i to Ct
j if and 

only if there exists an entity node vk ∈ Ct
i such that each of 

its supporters Ai ∈ Sk is a repressor of some entity vk′ ∈ Ct
j , 

i.e., Sk ⊆ ⋃
vk′ ∈Ct

j
Rk′ .

The partition Ct+1 is now formed by merging clusters 
Ct

j that belong to the same strongly connected compo-

nent in Dt into a single cluster Ct+1
k′ in Ct+1. Each cluster 

of Ct+1 corresponds to a unique strongly connected com-
ponent in Dt . If Dt contains no strongly connected com-
ponent except for singletons, which implies that no two 
cluster nodes of Dt can be merged, then the algorithm de-
clares the system L as reducible and halts. Otherwise, it 
proceeds with the new partition Ct+1. Importantly, in Ct+1

there are at least two entity subsets that belong to distinct 
clusters in Ct but to the same cluster node in Ct+1. If none 
of the rounds ends with the algorithm declaring the sys-
tem reducible (due to clusters “merging” failure), then the 
procedure proceeds with the cluster merging until at some 
round t∗ ≤ n − 1 the remaining partition Ct∗ = { {V} } con-
sists of a single cluster node that encompasses the entire 
entity set.
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Algorithm Irr_Test(L)

1. t ← 0;
2. kt ← n;
3. C0

i ← {vi} for every i ∈ [1, kt ];
4. C0 ← {C0

1 , . . . , C0
kt

};

5. While |Ct | > 1 do:
(a) R(Ct

i ) ←
⋃

vk∈Ct
i
Rk , for every i ∈ [1, kt ];

(b) Et ← {e(i, j) | ∃vk ∈ Ct
i , such that Sk ⊆ R(Ct

j)};

(c) Let Dt = (Ct , Et );
(d) kt+1 ← number of strongly connected components in Dt ;
(e) If kt+1 = kt and |Ct | ≥ 2, then return “no”;
(f) Decompose Dt (Ct , Et ) into strongly connected components ̂C1, . . . , ̂Ckt+1 ;
(g) Ct+1

i ← ⋃
C j∈Ĉ i C j for every i ∈ [1, kt+1];

(h) Ct+1 ← {Ct+1
1 , . . . , Ct+1

kt+1
};

(i) t ← t + 1;
6. Return “yes”.

Fig. 1. The pseudocode of Algorithm Irr_Test.
Analysis We first provide some high level intuition for 
the correctness of the algorithm. Recall, that the goal of 
the algorithm is to test whether the entire entity set 
V resides in a single strongly connected component in 
the constraint graph CGL(F ) for every selection matrix 
F ∈F . This test is performed by the algorithm in a grad-
ual manner by monotonically increasing the subsets of 
nodes that belong to the same strongly connected com-
ponent in every CGL(F ) . In the beginning of the execu-
tion, the most one can claim is that every entity vk is in 
its own strongly connected component. Over time, clus-
ters are merged while maintaining the invariant that all 
entities of the same cluster belong to the same strongly 
connected component in every CGL(F ) . More formally, the 
following invariant is maintained in every round t: the 
entities of each cluster Ct

i ⊆ V of the graph Dt are guar-
anteed to be in the same strongly connected component 
in the constraint graph CGL(F ) for every selection matrix 
F ∈ F . We later show that if the system L is irreducible, 
then the merging process never fails and therefore the last 
partition Ct∗ = { {V} } consists of a single cluster node that 
contains all entities, and by the invariant, all entities are 
guaranteed to be in the same strongly connected compo-
nent in the constraint graph of any hidden square subsys-
tem.

We now provide some high level explanation for the 
validity of this invariant. Starting with round t = 0, each 
cluster node C0

i = {vi} is a singleton and every singleton 
entity is trivially in its own strongly connected compo-
nent in any constraint graph CGL(F ) . Assume the invari-
ant holds up to round t , and consider round t + 1. The 
key observation in this context is that the new partition 
Ct+1 is defined based on the graph Dt = (Ct , Et), whose 
edges are independent of the specific supporter selection 
that is made by the entities (and that determines the re-
sulting hidden square subsystem). This holds due to the 
fact that a directed edge (i, j) ∈ Et between the clusters 
Ct

i , C
t
j ∈ Ct exists if and only if there exists an entity node 

vk ∈ Ct
i such that each of its supporter Ai ∈ Sk is a re-

pressor of some entity vk′ ∈ Ct
j . Therefore, if the edge (i, j)

exists in the Dt , then it exists also in the cluster graph cor-
responding to the constraint graph CGL(F ) (i.e., the graph 
formed by representing every strongly connected compo-
nent of CGL(F ) by a single node) for every hidden square 
subsystem L(F ), no matter which supporter Ai ∈ Sk was 
selected by F for vk . Hence, under the assumption that the 
invariant holds for Ct , the coarse-grained representation of 
the clusters of Ct in Ct+1 is based on their membership 
in the same strongly connected component in the “selec-
tion invariant” graph Dt , thus the invariant holds also for 
t + 1.

We next formalize this argumentation. We say that 
round t is successful if Dt contains a strongly connected 
component of size greater than 1. We begin by proving the 
following.

Claim 3.1. For every successful round t, the partition Ct+1 sat-
isfies the following properties.

(A1) Ct+1 is a partition of V , i.e., Ct+1
i ⊆ V , Ct+1

j ∩ Ct+1
i = ∅

for every i, j ∈ [1, kt+1], and 
⋃

j≤kt+1
Ct+1

j = V .

(A2) Every Ct+1
j ∈ Ct+1 is a strongly connected component in 

the constraint graph CGL(F ) for every selection matrix 
F ∈F .

Proof. By induction on t . Clearly, since C0
i = {vi} for ev-

ery i, Properties (A1) and (A2) trivially hold for C0. We 
now show that if round t = 0 is successful, then (A1) and 
(A2) hold for C1. Since the edges of D0 exist also in the 
corresponding cluster graph of CGL(F ) under any selection 
F of the entities, the clusters of C0 that are merged into a 
single strongly connected component in C1, belong also to 
the same strongly connected component in the constraint 
graph CGL(F ) of every F ∈ F . Next, assume these prop-
erties to hold for every round up to t − 1 and consider 
round t . Since round t is successful, any prior round t′ < t
was successful as well, and thus the induction assumption 
can be applied on round t − 1. In particular, since Ct+1

corresponds to strongly connected components of Dt , it 
represents a partition of the clusters of Ct . By the induc-
tion assumption for round t − 1, Property (A1) holds for Ct
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and therefore Ct is a partition of the entity set V . Since 
Ct+1 corresponds to a partition of Ct , it is a partition of V
as well so (A1) is established. Property (A2) holds for Ct+1

by the same argument provided for the induction base. The 
claim follows. �

We next show that the algorithm return “yes” for every 
irreducible system. Specifically, we show that for an irre-
ducible system, if |Ct | > 1 then round t is successful, i.e., 
the merging operation of the cluster graph Dt succeeds. 
Once Ct contains a single cluster (containing all entities), 
the algorithm terminates and returns “yes”. We first pro-
vide an auxiliary claim.

Claim 3.2. If L is irreducible and |Ct | > 1, then |Γ in(Ct
j,

Dt)| ≥ 1 for every Ct
j ∈ Ct .

Proof. First note that if Ct is defined, then round t − 1
was successful. Therefore, by Property (A1) of Claim 3.1, 
Ct is a partition of the entity set V . Assume, towards con-
tradiction, that the claim does not hold, and let Ct

j ∈ Ct

be such that Γ in(Ct
j, Dt) = ∅. Denote the set of incoming 

neighbors of component Ct
j in the constraint graph CGL

by W = Γ in(Ct
j, CGL) \ Ct

j . Since CGL is irreducible, the 
vertices of Ct

j are reachable from the outside, so W 	= ∅. 
Let the repressors set of Ct

j be R(Ct
j) =

⋃
vk∈Ct

j
Rk . We 

now construct a square hidden system L(F ∗) which is re-
ducible, in contradiction to the irreducibility of L. Specifi-
cally, we look for a selection matrix F ∗ satisfying that for 
every entity vk ∈ W , its selected supporter Ak in L(F ∗)
(i.e., the one for which F ∗(Ak, vk) = 1) is not a repressor 
of any of the entities in Ct

j , i.e., Ak ∈ Sk \ R(Ct
j). Re-

call, that since L is irreducible, the supporter sets Si, S j

are pairwise disjoint (see Corollary 2.1). Note that since 
Γ in(Ct

j, Dt) = ∅, such a selection matrix F ∗ exists. To see 
this, assume, towards contradiction, that F ∗ does not exist. 
This implies that there exists an entity vk ∈ W such that 
Sk ⊆ R(Ct

j), and therefore an affector in Sk \ R(Ct
j) could 

not be selected for F ∗ . Let Ct
i ∈ Ct be the cluster such that 

vk ∈ Ct
i . Since Ct is a partition of the entity set V , such Ct

i
exists. Since Sk ⊆R(Ct

j), the edge ei, j exists in Dt , in con-

tradiction to the fact that Ct
j has no incoming neighbors 

in Dt . We therefore conclude that F ∗ exists.
We now show that L(F ∗) is reducible. In particular, 

we show that the incoming degree of the component 
Ct

j (from entities in other components) in the constraint 
graph L(F ∗) of the square system L(F ∗), is zero, i.e., 
Γ in(Ct

j, CGL(F ∗)) = ∅. Assume, towards contradiction, that 
there exists a directed edge ex,y from entity vx ∈ V \ Ct

j

to some vy ∈ Ct
j in CGL(F ∗) . This implies that ex,y ∈ CGL

exists in the constraint graph of the original (nonsquare) 
system L and thus vx is in W . Let Ax′ ∈ Sx be the selected 
supporter of vx in F ∗ . By construction of F ∗ , Ax′ /∈ R(Ct

j), 
in contradiction to the fact that the edge ex,y ∈ CGL(F ∗)

exists.
Since there exists a node in CGL(F ∗) with no incoming 
neighbors, this graph is not strongly connected, implying 
that L(F ∗) is reducible.

Finally, as L is irreducible, it holds that every hidden 
square system is irreducible, in particular L(F ∗), hence, 
contradiction. The claim follows. �
Lemma 3.3. If L is irreducible then Algorithm Irr_Test(L) re-
turns “yes”.

Proof. By Claim 3.2, we have that if L is irreducible and 
|Ct | > 1, then every node in Dt has an incoming edge, 
which necessitates that there exists a (directed) cycle C =
(Ci1 , . . . , Cik ), for k ≥ 2 in Dt . Since the nodes in such cy-
cle C are strongly connected, they can be merged in Ct+1, 
and therefore round t is successful. Moreover, since at least 
two clusters of Ct are merged into a single cluster in Ct+1, 
we have that |Ct+1| < |Ct |. This means that the merging 
never fails as long as |Ct | > 1, so kt = |Ct | is monotonically 
decreasing. It follows that the algorithm terminates within 
at most n − 1 rounds with a “yes”. The lemma follows. �

We now consider a reducible system L and show that 
Irr_Test(L) returns “no”.

Lemma 3.4. If L is reducible, then Algorithm Irr_Test(L) returns 
“no”.

Proof. Towards contradiction, assume otherwise, i.e., sup-
pose that the algorithm accepts L. This implies that every 
round t ∈ [1, t∗] in which |Ct | > 1 is successful.

The reducibility of L implies that there exists (at 
least one) hidden square system L(F ) which is reducible, 
namely, its constraint graph D̂ = CGL(F ) is not strongly 
connected. Thus D̂ contains at least two nodes vi and 
v j that belong to distinct strongly connected components 
in D̂ . Note that vi and v j are in distinct clusters in C0, 
but belong to the same cluster in the partition of the fi-
nal Ct∗ . Therefore, there must exists a round t′ ∈ (0, t∗)
in which the cluster Ct′

i′ that contains vi and the cluster 
Ct′

j′ that contains v j appeared in the same strongly con-
nected component in Dt′ and were merged into a single 
strongly connected component in Ct′+1. (Note that since 
t′ − 1 is a successful round, Ct′ is a partition of the en-
tity set (Property (A1) of Claim 3.1) and therefore Ct′

i′ and 
Ct′

j′ exist.) Since round t′ is successful (otherwise the al-
gorithm would terminates with “no”), by Property (A2) 
of Claim 3.1, it follows that the entity subset of the uni-
fied cluster C ∈ Ct′+1 is in the same connected component 
in the constraint graph CGL(F ′) for every F ′ ∈ F . Since 
F ∈ F as well it holds that vi and v j are in the same con-
nected component in D̂ . Hence, contradiction. The lemma 
follows. �

By Lemmas 3.3 and 3.4 it follows that Algorithm Irr_
Test(L) returns “yes” iff the system L is irreducible, which 
establish the correctness of the algorithm.

Claim 3.5. Algorithm Irr_Test terminates in O (m · n2) rounds.
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Proof. The algorithm consists of at most n − 1 rounds.
In each round t , it constructs the cluster graph Dt =
(Ct−1, Et) in time O (n ·m). The decomposition into strongly 
connected components can be done in O (|Dt |) = O (n2). 
The claim follows. �
Theorem 3.6. There exists a polynomial time algorithm for de-
ciding irreducibility on nonnegative systems.
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