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Abstract of the Thesis

Algebraic Algorithms for

Information Spreading

By: Michael Borokhovich

Advisors: Dr. Chen Avin, Prof. Zvi Lotker

April 30, 2014

We study problems of information spreading in communication networks using

algebraic methods and algorithms. First, we study the stopping times of uniform

gossip algorithms for network coding, where uniform means that a communication

partner is always chosen uniformly at random. We analyze algebraic gossip (i.e.,

random linear network coding) and consider three gossip algorithms for all-to-all in-

formation spreading: PULL, PUSH, and EXCHANGE. The stopping time of algebraic gossip

for all-to-all dissemination is known to be linear for the complete graph, but the ques-

tion of determining a tight upper bound or lower bounds for general graphs remained

open prior to our work. We take a major step in solving this question, and prove that

algebraic gossip on any graph of size n is O(∆n) where ∆ is the maximum degree of

the graph. This leads to a tight bound of Θ(n) for bounded degree graphs and an

upper bound of O(n2) for general graphs. We show that the latter bound is tight by

providing an example of a graph with a stopping time of Ω(n2). Our proofs use a

novel method that relies on Jackson’s queuing theorem to analyze the stopping time

of network coding; this technique is likely to become useful for future research.

Then, we extend our study of gossip-based information spreading. We use al-

gebraic gossip to disseminate k distinct messages to all n nodes in a network (k-

dissemination problem). For arbitrary networks we provide a new upper bound for

ix



uniform algebraic gossip of O((k + log n+D)∆) rounds with high probability, where

D and ∆ are the diameter and the maximum degree in the network, respectively. For

many topologies and selections of k this bound improves previous results, in partic-

ular, for graphs with a constant maximum degree it implies that uniform gossip is

order optimal and the stopping time is Θ(k + D). To eliminate the factor of ∆ from

the upper bound we propose a non-uniform gossip protocol, TAG, which is based on

algebraic gossip and an arbitrary spanning tree protocol S. The stopping time of TAG

is O(k + log n + d(S) + t(S)), where t(S) is the stopping time of the spanning tree

protocol, and d(S) is the diameter of the spanning tree. We provide a general case in

which this bound leads to an order optimal protocol. For k = Ω(n), using a simple

gossip broadcast protocol that creates a spanning tree in at most linear time, we show

that TAG finishes after Θ(n) rounds for any graph.

Finally, we turn to another interesting problem. Consider n receivers and m

(m ≥ n) transmitters embedded in Rd. Each receiver has a certain number of dedicated

transmitters that can transmit to it (and only to it) synchronously. All transmitters are

set to transmit at the same time with the same frequency, thus causing interference

to the other receivers. Therefore, receiving and decoding a message at receiver ri

depends on the transmitting power of its dedicated transmitters (the desired signal)

as well as the power of the rest of the transmitters (the interference). We assume the

SINR model for communication channel, i.e., if the signal strength received by a device

divided by the interfering strength of other simultaneous transmissions is above some

reception threshold β, then the receiver successfully receives the message, otherwise it

does not. The question of power control is then to find an optimal power assignment

for the transmitters, so as to make β as high as possible and ease the decoding process.

We show that there exists an optimal power allocation in which for every receiver only

one dedicated transmitter transmits (so-called 0∗ solution), and give a polynomial

time algorithm that uses nontrivial algebraic tools for finding it.

x



Chapter 1

Introduction

1.1 Preface

The thesis presents main results of the work done during my Ph.D. studies (2009-

2013). We study the problems of information spreading in networks using algebraic

and algorithmic approaches. The research deals with different aspects and models. We

consider uniform and non-uniform gossip algorithms, synchronous and asynchronous

time models, and various message exchange variations (PULL, PUSH, EXCHANGE). Then

we also consider a wireless network with the signal-to-interference connectivity model

and solve the problem of optimal power allocation. All presented results use original

techniques that probably would be useful in future research.

The lion’s share of the thesis is dedicated to the analysis of gossip dissemination

algorithms and, in particular, algebraic gossip, which is a combination of gossip and

random linear network coding [36]. The work on algebraic gossip resulted in two

journal publications: the first in “Random Structures & Algorithms” (RSA) [9] and

the second in “Distributed Computing” (DIST) [3]. Preliminary versions of these

papers appeared in the Proceedings of ISIT 2010 [8] and PODC 2011 [2] conferences,

respectively.

During the course of my Ph.D. studies, there were fruitful collaborations that

led to additional publications. A very interesting work, which was done in collab-
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oration with Dr. Yoram Hadad, Dr. Erez Kantor, Ms. Merav Parter, and Prof.

David Peleg, was devoted to generalizing the famous Perron-Frobenius Theorem to

non-square matrices [4]. In this thesis, we show an application of the Generalized

Perron-Frobenius Theorem, proved in [4], for the power allocation problem in wireless

networks, where each receiver has several dedicated transmitters. Additional interest-

ing research results that are not described in the thesis, can be found in the full list

of my publications.

1.2 Gossip Algorithms

Ad hoc and sensor networks usually do not have a central entity for managing infor-

mation spreading. Moreover, such wireless stations have limited energy and compu-

tational power. All this leads to a need for local, distributed, and efficient algorithms

for disseminating information across the network. Gossip algorithms for information

dissemination were first introduced in [24] in the context of updating a database repli-

cated at many sites. In [23], Amazon.com introduced Dynamo, a highly available and

scalable data store, used for storing the state of a number of core services. Dynamo

employs a gossip-based distributed failure detection and membership protocol. Gossip

approach was also used by Harchol-Balter et al. [35] for developing an efficient and

distributed resource discovery algorithm. This algorithm was later adopted by Aka-

mai Technologies for machines discovery in content distribution systems. In a gossip

algorithm there is no need for a centralized controller and every node relies only on

its local information; thus gossip algorithms are inherently distributed. A systematic

survey of gossip algorithms used in communication networks can be found in [54].

Let us now briefly describe some specific properties and assumptions that we

used regarding gossip algorithms. First, we define two time models: synchronous and

asynchronous. In a synchronous time model, in each round, each node chooses a single

neighbor as the communication partner and takes an action. In an asynchronous time
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model, at every timeslot, a single node wakes up, chooses a communication partner,

and takes an action. We say that every n consecutive timeslots are considered as one

round. The action taken by the nodes can be one of the following variations: PUSH,

PULL, or EXCHANGE; where in PUSH, one message is sent to the partner, in PULL, one

message is received from the partner, and in EXCHANGE (sometimes called PUSH-PULL in

the literature), one message is sent and one is received. We assume that all messages

have limited size (i.e., a node may not be able to send all its data in one message).

If the communication partner is chosen uniformly at random, we obtain a uniform

gossip. In this thesis we consider both uniform and non-uniform gossip, both time

models (synchronous and asynchronous), and all the gossip variations (PUSH, PULL,

and EXCHANGE).

1.3 Algebraic Gossip Protocol

We distinguish gossip algorithms and gossip protocols [10]. While a gossip algorithm

defines when and to which neighbor a message will be sent, a gossip protocol defines

the task that should be performed by the network using a gossip algorithm, e.g.,

calculation of some aggregate function, or information dissemination. In particular,

a gossip protocol defines the content of each message and the stopping condition for

each node.

Algebraic gossip is a gossip protocol that can perform information dissemination

tasks. For example, assume that every node in the network has one initial message,

and the task is to deliver all these messages to all the nodes (this scenario is called

all-to-all dissemination). In a simple gossip dissemination protocol, a node would for-

ward one (since the message size is limited) uncoded message from the set of messages

it has collected so far to a neighbor according to the gossip algorithm. In the algebraic

gossip protocol, instead of sending uncoded messages, a node builds a random linear

combination (equation) of the messages (which are, in turn, also linear combinations

3
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Figure 1.1: In this example, every initial message is a vector (of length 3) of elements

from the finite field F4. (a) – Simple gossip dissemination protocol. A node sends

uncoded messages xi ∈ F3
4. (b) – Algebraic gossip. A node sends random linear com-

binations
∑

i aixi of the messages it has collected, along with the random coefficients

ai ∈ F4. Note that
∑

i aixi is a vector in F3
4.

of the initial messages) it has collected so far, and sends them according to the gos-

sip algorithm (see Figure 1.1 for an illustration). Once a node accumulates enough

independent equations (i.e., when the number of independent equations is equal to

the number of initial messages that needed to be spread), it can decode all the initial

messages by simply solving the linear system. When sending a random linear combi-

nation, a node has to send both the outcome of the combination and all the random

coefficients. All the algebraic operations are performed over a finite field and thus the

size of the combination’s outcome is the same as the size of a single message. More-

over, if the message size is relatively large, the overhead of sending the coefficients

becomes negligible.

Uniform algebraic gossip was first proposed by Deb et al. [22]. The authors

considered synchronous time model, PUSH and PULL gossip variations, and studied it

on the complete graph. They showed that algebraic gossip strictly outperforms an

RMS (Random Message Selection) gossip protocol in which a node sends a randomly

4



selected message from the messages it has collected so far. The key reason for the

advantage of algebraic gossip is that by using random linear network coding (i.e.,

sending random linear combinations of messages it has), a node is able to send a

helpful message to a neighbor, with higher probability than in RMS.

So, Deb et al. [22] analyzed the stopping time of algebraic gossip for a complete

graph. Mosk-Aoyama and Shah [47] analyzed uniform algebraic gossip for arbitrary

graphs, but their bounds were not tight. The question of a tight upper bound remained

open until our work, presented in Chapter 2.

We analyze algebraic gossip for an all-to-all dissemination task, and then we

extend our results to the many-to-all case. While uniform algebraic gossip turns out

to be an efficient dissemination protocol, there are graphs for which it performs badly.

So, we go beyond the uniform gossip by proposing a nonuniform algebraic gossip

protocol and prove that it is an order optimal dissemination protocol for many graph

families.

1.4 Power Allocation Under SIR Model

Motivated by algorithmic aspects of wireless networks in the SINR model [6, 38, 5],

we started to investigate the problem of power allocation when each receiver has

several dedicated transmitters. In a classic SISO (single input single output) case,

each receiver has exactly one dedicated transmitter. Here, we consider the MISO

(multiple input single output) case, in which for every receiver we can transmit from

several transmitters (see Figure 1.2 for an illustration). We assume that transmitters

dedicated to the same receiver are perfectly synchronized and transmit exactly the

same information; thus their signals just sum up at the receiver.

In the SINR model for communication channel, if the signal strength received by

a device divided by the interfering strength of other simultaneous transmissions plus

the white noise, is above some reception threshold β, then the receiver successfully

5
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Figure 1.2: Example of a MISO wireless network. Receiver r1 has two dedicated

transmitters {t1, t2}, r2 has three dedicated transmitters {t3, t4, t5}, and receiver r3

has a single dedicated transmitter t6.

receives the message, otherwise it does not [52]. So, the goal of power control is finding

the optimal power levels for transmitters in order to make β as high as possible, which

will ease the decoding process and make it cheaper. In this work, we assume that

there is no white noise, so, we will usually call our SINR model, the SIR (signal-to-

interference) model.

In the SISO case, the power control problem was solved elegantly by Zander

[56], who proved, using the well-known Perron–Frobenius Theorem [51, 30], that the

optimal SIR ratio and the optimal power vector are closely related to the largest eigen-

value and the corresponding Eigen-vector of the square matrix representing the gains

between each receiver-transmitter pair. But in our MISO case, the matrix of gains is no

longer square (since each receiver may have more than one dedicated transmitter), and

thus the Perron–Frobenius Theorem is not applicable. This motivated us to prove, in

[4], the Generalized Perron–Frobenius Theorem. In this thesis, we use this generalized

result to solve the power allocation problem for the MIMO case.
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1.5 Main Research Questions and Results of the

Thesis

Our first research question is an upper bound on the stopping time of algebraic gossip

for the all-to-all dissemination task on an arbitrary, connected graph Gn with n nodes.

For the all-to-all dissemination task, we assume that there are n initial messages, and

each node possesses exactly one initial message. All the n messages are need to be

delivered to all n nodes. Formally, we ask the following question:

Question 1. What is the number of communication rounds it takes to complete the

all-to-all dissemination task using algebraic gossip, in both synchronous and asyn-

chronous time models, and for three gossip variations: PUSH, PULL, and EXCHANGE?

Let ∆ be the maximum degree of the graph Gn. We prove an upper bound for

any network topology that is O(∆n). This leads to a tight bound of Θ(n) for bounded

degree graphs and an upper bound of O(n2) rounds for general graphs. Our proofs

use a novel technique that relies on queuing theory to analyze the stopping time of

algebraic gossip, and it is likely to become useful for future research.

The next question that we novelly raise in the context of algebraic gossip, is

about the worst case lower bound, i.e., what is the worst topology for the stopping

time of uniform algebraic gossip?

Question 2. For the worst case graph, what is the lower bound on the number of

communication rounds it takes to complete the all-to-all dissemination task using

algebraic gossip, in both synchronous and asynchronous time models? What is the

worst case graph?

It turns out that the worst case stopping time is Ω(n2), which shows that our

upper bound of O(n2) for general graphs is tight. An example of such a worst case
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topology is the barbell graph (see Figure 1.3), due to its specific bottleneck that

interconnects the two cliques.

���

���� ���

Figure 1.3: Barbell graph: two cliques of size n/2 connected with a single edge.

An additional contribution of this part of the thesis is the analysis of the EXCHANGE

gossip variation. While traditionally algebraic gossip protocols used PUSH or PULL as

their gossip algorithms, it was unclear if using EXCHANGE (that uses twice as many

messages than PULL or PUSH) can lead to significant improvements in stopping time.

Question 3. Can EXCHANGE gossip variation provide significant (in an order of mag-

nitude) speedup for algebraic gossip, in comparison to PUSH and PULL?

We give a positive answer to this question and prove that, for some topologies,

using the EXCHANGE algorithm can be unboundedly better than using PULL or PUSH. We

show that while the time it takes the EXCHANGE algorithm to complete the algebraic

gossip on the star graph (which is a tree of n nodes with one node having degree

n− 1 and the other n− 1 nodes having degree 1) is O(n), the time it takes the PULL

and PUSH algorithms to finish the same task, is Ω(n log n). On the contrary, there

are many other graphs (e.g., bounded degree graphs, complete graph) on which these

three gossip variations have the same asymptotical behavior.

Then, we extend our study on algebraic gossip and consider a more general sce-

nario of many-to-all dissemination. In this task, k initial messages located somewhere

in the network (i.e., each node can possess an arbitrary number of initial messages),

needed to be disseminated to all the nodes. As in the all-to-all case we assume an

arbitrary, connected graph Gn with n nodes and maximum degree ∆.
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Question 4. What is the number of communication rounds it takes to complete the

many-to-all dissemination task using algebraic gossip, in both synchronous and asyn-

chronous time models?

Let D represent the diameter of the graph Gn. We prove that an upper bound

for delivering k messages to all the n nodes is O((k+ log n+D)∆) rounds. For many

topologies and selections of k this bound improves previous results, in particular, for

graphs with a constant maximum degree it implies that uniform gossip is order optimal

and the stopping time is Θ(k +D).

While algebraic gossip protocol achieves order optimal time for information dis-

semination for many topologies, there are graphs for which algebraic gossip performs

badly (e.g., for the barbell graph in Figure 1.3). Hence, we were interested in finding

an enhancement for algebraic gossip that will allow it to become optimal for many

more cases.

Question 5. Can we modify the algebraic gossip protocol (possibly by using a non-

uniform gossip) so that it will become optimal for the information dissemination

task?

The answer to this question is a very important result in the context of gossip

protocols. We propose a modified algebraic gossip protocol – TAG. This protocol is

based on algebraic gossip and an arbitrary spanning tree protocol S. First, using

S, TAG constructs a spanning tree on Gn, and then, non-uniform algebraic gossip

is performed over this spanning tree. Let t(S) be the stopping time of the spanning

tree protocol S, and d(S) be the diameter of the resulting spanning tree. Then, the

number of communication rounds needed to deliver k initial messages to all the n

nodes is O(k+ log n+ d(S) + t(S)). Additionally, we prove that using a simple gossip

broadcast protocol that creates a spanning tree in at most linear time, TAG finishes

after Θ(n) rounds for any graph that is order optimal for the case where k = Ω(n).

Since TAG is based on a tree topology, which is vulnerable to edge failures, there
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is a question of how suitable TAG is for real-life networks. We discuss this issue in

Section 3.4.3 and also propose there some natural enhancements that make TAG a

more robust protocol.

While our bounds on the uniform algebraic gossip use the parameter ∆ (max-

imum degree of the graph), which is very convenient to use and easy to find, it does

not perfectly capture the stopping time behavior for every graph. While our bounds

are tight in the worst case sense, there are topologies for which the bounds with ∆ are

not tight (e.g., the complete graph). Hence, in our first work on algebraic gossip [8]

we raised a question of finding an alternative (to the maximum degree) graph feature

that will better describe the stopping time for specific topologies. A recent work of

Haeupler [33] successfully answers this question by using a min-cut measure of a graph,

and a novel and elegant approach to prove the results. The results of [33] are tight for

the all-to-all dissemination. However, for many-to-all dissemination, the results are

not tight for specific graph families, while our bound of O((k + log n+D)∆) is tight.

Further discussion and comparison can be found in Section 3.1.2.

Our last result presented here, deals with finding an optimal power allocation

for a set of transmitters. Consider a wireless network of n receivers and m (m ≥ n)

transmitters. Each receiver has a certain number of dedicated transmitters that can

transmit to it (and only to it) synchronously. All transmitters are set to transmit at

the same time with the same frequency, thus causing interference to the other receivers.

Assuming that there is no white noise, we define an SIR (signal-to-interference) ratio

for a receiver as a ratio between the sum of the signals of dedicated transmitters

divided by the sum of signals of all the other transmitters in the network. Let g(i, j)

be the gain of a signal transmitted by transmitter tj at the location of the receiver ri.

In the SIR model, the energy of a signal fades with the distance to the power of the

path-loss parameter α (which usually equals 2), i.e., g(i, j) = d(ri, tj)
−α. Let T denote

the set of all the m transmitters in the network, and Ti denote the set of transmitters
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dedicated to the receiver ri (for example, in Figure 1.2, T2 = {t3, t4, t5}). We denote

by vector X = (X1, X2, . . . , Xm) the power levels of all the m transmitters. Now we

can formulate our research question.

Question 6. Given a wireless network where each receiver has several dedicated trans-

mitters, what is the optimal power allocation that achieves the highest possible signal-

to-interference ratio?

Formally, we have the following optimization problem:

maximize β subject to: (1.1)∑
tj∈Ti Xj · d(ri, tj)

−α∑
tj∈T\Ti Xj · d(ri, tj)−α

≥ β ∀i ∈ [1, . . . , n],

∥∥X∥∥
1

= 1, X ≥ 0.

So, our goal is to find an optimal power allocation vector X
∗
, such that the

minimal signal to interference level (among all the receivers) in the network will be

maximal. This optimization problem is not convex and not even log-convex [4], hence,

there is a need for more creative methods for solving it. We first use the General-

ized Perron-Frobenius Theorem, proved in [4], to characterize the optimal solution.

Interestingly, it turns out that there exists an optimal power allocation in which only

one transmitter per receiver can be active (so called 0∗ solution), i.e., the option

to have many dedicated transmitters, instead of one, does not improve the signal-

to-interference ratio. The benefit one can get from having multiple transmitters is

translated to the choice of the “best” set of single transmitters among exponentially

many options. We then propose a nontrivial algorithm, which uses sophisticated alge-

braic tools, for finding the optimal solution. For a wireless network with n receivers, m

transmitters, and maximum value of gain Gmax = maxi,j {g(i, j)}, the running time of

our algorithm is O(n3 ·Tellips · (log (n · Gmax) + n)), where Tellips is the running time of

the Ellipsoid method [42] for checking a given β for feasibility. Notice that for a given
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β, the optimization problem 1.1 becomes linear and thus Tellips is also linear. Hence,

we obtain a polynomial time algorithm for a non-convex (and even non-log-convex)

optimization problem 1.1.

1.6 Organization

The thesis is organized as follows. Chapter 2 presents the analysis of algebraic gossip

for all-to-all information dissemination. We provide tight upper and lower bounds on

the running time of the algorithm. We also novelly show that using the EXCHANGE

gossip variation, instead of the traditionally used PUSH or PULL, can be unboundedly

better. Chapter 3 continues the study of gossip algorithms and presents the analysis

of algebraic gossip for many-to-all dissemination and also proposes the alternative

dissemination protocol that is order optimal for some general cases. In Chapter 4

we analyze the power allocation problem in which the information should be spread

from a set of cooperating transmitters to the appropriate receiver in the presence of

interference. We give an algebraic characterization of optimal solution and, using its

algebraic properties, propose a polynomial time algorithm to find it.

The chapters are written in a way that allows independent reading, but for better

understanding of algebraic gossip it is desirable to start with Chapter 2. Each chapter

includes its own introduction, overview of the related literature, preliminaries, main

results with all the proofs, and a conclusion section.
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Chapter 2

Algebraic Gossip – All-to-All Dis-

semination

2.1 Introduction

Randomized gossip-based protocols are attractive due to their locality, simplicity, and

structure-free nature, and have been offered in the literature for various tasks, such

as ensuring database consistency and computing aggregate information [39, 40, 10].

Consider the case of a connected network with n nodes, each holding a value it would

like to share with the rest of the network. Motivated by wireless networks and limited

resource sensor motes, in recent years researchers have studied the use of randomized

gossip algorithms together with network coding for this multicast task [45, 43]. The

use of network coding protocols for multicast has received growing attention due to

the ability of such protocols to significantly increase network capacity.

Let us look at the following basic network coding example [29]. Consider a But-

terfly Network (see Figure 2.1) with sources S1 and S2, each is wishing to multicast

to both R1 and R2. All links have capacity 1. Without network coding, the max-

imum achievable source-destination rate (assuming both rates are equal) is 1.5, due

to a bottleneck at node C. Using a simple linear network coding, we can “xor” the

information coming from S1 and S2 at the node C. By doing so, each receiver will
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Figure 2.1: (a) – Without network coding, bottleneck at C brings the capacity to 1.5.

(b) – With network coding, C transmits at each time unit information that is helpful

to both receivers, thus the capacity is 2.

obtain two linear equations: R1 will get: x1 and x1 + x2, and R2 will get: x2 and

x1 + x2. Now, each receiver is able to solve this simple linear system and discover x1

and x2. It is clear that the resulting throughput is now 2.

In this work we consider algebraic gossip, a gossip-based network coding protocol

known as random linear coding [36]. In the discussion on gossip-based protocols we

distinguish between the gossip algorithm and the gossip protocol. A gossip algorithm is

a communication scheme in which at every timeslot, a random node chooses a random

neighbor to communicate with. We consider three known gossip algorithms: PUSH: a

message is sent to the neighbor, PULL: a message is sent from the chosen neighbor, and

EXCHANGE: the two nodes exchange messages. The gossip protocol, on the other hand,

determines the content of messages sent. In algebraic gossip protocol, the content of

the messages is a random linear combination of all messages stored by the sending

node. Once a node has received enough independent messages (independent linear

equations) it can solve the system of linear equations and discover all the initial values

of all other nodes.

We study the performance of algebraic gossip on arbitrary network topologies,

where information is disseminated from all nodes in the network to all nodes, i.e.,
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all-to-all dissemination. Previously, algebraic gossip was considered with PUSH and

PULL gossip algorithms; here we also study the use of EXCHANGE, which can lead to

significant improvements for certain topologies (as we show). Our main goal is to find

tight bounds for the stopping time of the algebraic gossip protocol, both in expectation

and with high probability (w.h.p.), i.e., with probability of at least 1− 1
n
.

2.1.1 Related Work

The stopping time question, i.e., bounding the number of rounds until protocol com-

pleteness, has been addressed in the past. Deb et al. [22] studied algebraic gossip

using PULL and PUSH on the complete graph and showed a tight bound of Θ(n), a lin-

ear stopping time, both in expectation and with high probability. Boyd et al. [10, 12]

studied the stopping time of a gossip protocol for the averaging problem using the

EXCHANGE algorithm. They gave a bound for symmetric networks that is based on

the second largest eigenvalue of the transition matrix or, equally, the mixing time of

a random walk on the network, and showed that the mixing time captures the be-

havior of the protocol. Mosk-Aoyama and Shah [47] used a similar approach to [10]

and [12] to analyze algebraic gossip on arbitrary networks. They consider symmetric

stochastic matrices that (may) lead to a non-uniform gossip and gave an upper bound

for the PULL algorithm that is based on a measure of conductance of the network.

As the authors mentioned, the offered bound is not tight, which indicates that the

conductance-based measure does not capture the behavior of the protocol. The ques-

tion about a worst case topology for algebraic gossip was not previously addressed in

the literature.

2.1.2 Overview of Results of the Current Chapter

The main contribution of this chapter is new bounds for the stopping time of algebraic

gossip for all-to-all dissemination on arbitrary graphs. Our bounds are tight for many

15



graph families; moreover, for almost any chosen maximum degree there exist graphs

for which the bounds are tight. First, in Theorem 2.4, we show that there exists a

family of graphs for which algebraic gossip takes Ω(n2) rounds. Our main result then,

Theorem 2.1, gives an upper bound of O(∆n) for the stopping time of algebraic gossip

on any graph, where ∆ is the maximum degree in the graph.

Theorem 2.1. For the asynchronous (synchronous) time model and for any graph

G of size n with maximum degree ∆, the stopping time of algebraic gossip is O(∆n)

rounds both in expectation and with high probability.

This result immediately leads to two interesting corollaries. In Corollary 2.1 we

state a matching upper bound: for any graph of size n, since the max ∆ = n, algebraic

gossip will stop w.h.p. in O(n2) rounds. In Corollary 2.2 we conclude a strong tight

bound for any constant degree network (i.e., ∆ is constant) of Θ(n). This improves

upon known previous upper bounds that, for certain constant degree graphs, had an

upper bound of O(n2). Note that the bound of O(∆n) is not tight for all graphs (e.g.,

the complete graph) and the question of determining the properties of a network that

capture tightly the stopping time of algebraic gossip is still open. We also show in

Theorem 2.4 that the upper bound O(∆n) is tight in the sense that for almost any ∆

there exist graphs for which algebraic gossip takes Ω(∆n) rounds.

The second contribution of the chapter is the technique we use to prove our

results. We novelly bound the stopping time of algebraic gossip via reduction to

a network of queues and by the stationary state of the network that follows form

Jackson’s theorem for an open network of queues. The idea of using a queuing theory

approach for network coding analysis was first introduced in [44] but, as opposed to

our approach, it did not include the aspect of a gossip communication model. We

believe that the type of reduction presented in this work could be used for future

analysis of gossip protocols.

Third, we compare three gossip algorithms: PUSH, PULL, and EXCHANGE. While
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traditionally algebraic gossip used PULL or PUSH as its gossip algorithms, it was unclear

if using EXCHANGE (that uses twice as many messages than PULL or PUSH) can lead to

significant improvements in stopping time. We give a surprising affirmative answer to

this question and prove that, for some topologies, using the EXCHANGE algorithm can

be unboundedly better than using PULL or PUSH. We show that while the time it takes

the EXCHANGE algorithm to complete the algebraic gossip on the star graph is linear,

i.e., O(n) the time it takes the PULL and PUSH algorithms to finish the same task, is

Ω(n log n). On the contrary, there are many other graphs such as the complete graph

and all constant maximum degree graphs (see Section 2.4), on which these three gossip

algorithms have the same asymptotical behavior.

Recently, there have been some advances in answering open questions raised in

this work. In particular, the conference paper of Haeupler [33] and our recent work

presented in Chapter 3. We discuss these works in Conclusions.

The rest of the chapter is organized as follows. In Section 2.2 we present the

communication and time models, define gossip algorithms and gossip protocols, and

formally state the gossip stopping problem. In Section 2.3 we show that algebraic gossip

on the ring graph is linear using Jackson’s theorem. In Section 2.4 we prove our main

results: a tight upper bound for arbitrary networks and a tight linear bound for graphs

with a constant maximum degree. Section 2.5 gives an answer to the question: “Can

EXCHANGE be better than PUSH or PULL?” by providing a topology for which EXCHANGE

is unboundedly faster. We conclude in Section 2.8.

2.2 Preliminaries and Models

2.2.1 Network and Time Model

We model the communication network by a connected undirected graphGn = Gn(V,E),

where V = {v1, v2, ..., vn} is the set of vertices and E ⊆ V × V is the set of edges. Let
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N(v) ⊆ V be a set of neighbors of node v and dv = |N(v)| its degree, let ∆ = maxv dv

be the maximum degree of Gn.

The time is assumed to be slotted where n consecutive timeslots are regarded as

one round. We consider the following time models:

• Asynchronous time model. At every timeslot, a node selected independently

and uniformly at random takes an action (determined by a Gossip Algorithm)

and a single pair of nodes communicates.1 In this model there is no guarantee

that a node will be selected exactly once in a round; nodes can be selected several

times or not at all.

• Synchronous time model. At every round, all the nodes wake up syn-

chronously and every node takes an action (determined by a Gossip Algorithm).

2.2.2 Gossip Algorithms

A gossip algorithm defines the way information is exchanged or spread in the network.

When a node wakes up (according to a time model), it takes an information spreading

action that is divided into two phases: (i) choosing a communication partner and (ii)

spreading the information. A communication partner u ∈ N(v) is chosen by node

v ∈ V with probability pvu. Throughout this chapter we will assume uniform gossip

algorithms, i.e., pvu = 1
dv

.

We distinguish three gossip algorithms for information spreading between v and

u, PUSH, PULL, and EXCHANGE as explained in the Introduction. We assume that in the

asynchronous time model, messages sent in timeslot t are received in timeslot t and

can be forwarded or processed at timeslot t + 1, and in the synchronous time model,

messages sent in round t are received in round t and can be forwarded or processed at

round t+ 1.

1Alternately, this model can be seen as each node having a clock that ticks at the times of a rate

1 Poisson process and there is a total of n clock ticks per round [10].
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2.2.3 Algebraic Gossip

A gossip protocol is a task that is being executed using gossip algorithms, for example,

calculation of aggregate functions, resource discovery, and database consistency. We

now describe the algebraic gossip protocol for the multicast task: disseminating n

initial values of the nodes to all n nodes.

Let Fq be a field of size q, each node vi ∈ V holds an initial value xi that is

represented as a vector in Frq. We can represent every message as an integer value

bounded by M , and therefore, r =
⌈
logq(M)

⌉
. All transmitted messages have a fixed

length and represent linear equations over Fq. The variables of these equations are

the initial values xi ∈ Frq and a message contains the coefficients of the variables and

the result of the equation; therefore the length of each message is: r log2 q + n log2 q

bits. A message is built as a random linear combination of all messages stored by

the node and the coefficients are drawn uniformly at random from Fq. A received

message will be appended to the node’s stored messages only if it is independent of

all linear equations (messages) that are already stored by the node and otherwise it

is ignored. Initially, node vi has only one linear equation that consists of only one

variable corresponding to xi multiplied by a coefficient 1 and equal to the value of

xi, i.e., the node knows only its initial value. Once a node receives n independent

equations it is able to decode all the initial values and thus completes the task.

For a node v at timeslot (round)2 t, let Sv(t) be the subspace spanned by the

linear equations (or vectors) it stores (i.e., the coordinates of each vector are the

coefficients of the equation) at the beginning of timeslot (round) t. The dimension (or

rank) of a node is the dimension of its subspace, i.e., dim(Sv(t)) and it is equal to the

number of independent linear equations stored by the node.

We say that a node v is a helpful node to node u at the timeslot (round) t if

and only if Sv(t) 6⊂ Su(t), i.e., iff a random linear combination constructed by v can

2For asynchronous time model – timeslot, for synchronous – round.
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be linearly independent with all equations (messages) stored by u. We call a message

a helpful message if it increases the dimension of the node. The following lemma,

which is a part of Lemma 2.1 in [22], gives a lower bound for the probability of a

message sent by a helpful node to be a helpful message.

Lemma 2.1 ([22]). Suppose that node v is helpful to node u at the beginning of the

timeslot (round) t. If v transmits a message to u at the timeslot (round) t, then:

Pr (dim(Su(t+ 1)) > dim(Su(t))) ≥ 1− 1
q
.

That is, the probability of the message to be helpful is at least 1− 1
q
.

2.2.4 The Gossip Stopping Problem

Our goal is to compute bounds on time and number of messages needed to be sent in

the network to complete various gossip protocols over various gossip algorithms. For

this purpose we define the following:

Definition 2.1 (Excepted and high probability stopping times). Given a graph Gn,

gossip algorithm A, and a gossip protocol P, the stopping time t(A,P , Gn) is a ran-

dom variable defined as the number of timeslots by which all nodes complete the task.

E[t(A,P , Gn)] is the expected stopping time and the high probability stopping time t̂

is defined as follows:

t̂(A,P , Gn) = min
t∈Z

[
τ | Pr (t(A,P , Gn) ≤ τ) ≥ 1− 1

n

]
.

We can now express our research question formally:

Definition 2.2 (Gossip stopping problem). Given a graph Gn, a gossip algorithm A,

and a gossip protocol P, the gossip stopping problem is to determine E[t(A,P , Gn)]

and t̂(A,P , Gn), the expected and high probability stopping times.
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In this chapter we consider A ∈ {PUSH, PULL, EXCHANGE} and P = algebraic

gossip, so when these parameters and Gn are understood from the context, we denote

the expected and high probability stopping times as E[t] and t̂, respectively. Moreover,

we usually measure the stopping time in rounds (in order to compare between the two

time models) where one round equals n consecutive timeslots. Thus, we define the

expected number of rounds as E[r] = E[t]/n and r̂ = t̂/n as the number of rounds by

which all nodes complete the task with high probability.

For clarity, we first present our proofs for the asynchronous time model and the

EXCHANGE algorithm. Then, in Section 2.6 we extend the results to the synchronous

cases and PUSH and PULL.

2.3 Linear Bound on a Ring via Queuing Theory

Before proving the main results of Theorem 2.1 in the next section we prove in this

section a bound on the specific case of a ring network. This is a simpler case to prove

and understand, and will be used as a basis for the proof of the general result. A ring

of size n is a connected cycle where each node has one left and one right neighbor.

Theorem 2.2. For the asynchronous time model and the ring graph of size n, the

stopping time (measured in rounds) of algebraic gossip is linear both in expectation

and with high probability, i.e., E [r] = Θ(n) and r̂ = Θ(n).

Proof. The idea of the proof is to reduce the problem of network coding on the ring

graph to a simple system of queues and use Jackson’s theorem for open networks to

bound the time it takes helpful messages to cross the network.

To simplify our analysis, we cut the ring in an arbitrary place and get a path

graph (without loss of generality, we assume that the leftmost node in the path is v1

and the rightmost node is vn), see Fig. 2.2 (a). It is clear that the stopping time

of the algebraic gossip protocol will be larger in a path graph than in a ring graph.
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Figure 2.2: Modeling algebraic gossip in a path as a queuing network. (a) – Initial

path graph. (b) – One real customer at each node. (c) – Queues are filled with dummy

customers and real customers enter the system from outside.

Another simplification that we will do, for the first part of the proof, is to consider

only the messages that travel from left to right (towards vn) (i.e., other messages will

be ignored, thus increasing the stopping time).

We define a queuing system by assuming a queue with a single server at each

node. Customers of our queuing network are the helpful messages, i.e., messages that

increase the rank of a node they arrive at. This means that every customer arriving at

some node increases its rank by 1, so the queue size at a node represents a measure of

helpfulness of the node to its right-hand neighbor (i.e., the queue size is the number of

independent linear equations that the node can generate for its right-hand neighbor).

The service procedure at node vi is a transmission of a helpful message (customer)

from vi to vi+1. So, from Lemma 2.1, the probability that a customer will be serviced

at node vi in a given timeslot is: p ≥ 1
n
(1 − 1

q
), where 2

n
· 1

2
= 1

n
is the probability

that in the EXCHANGE algorithm a message will be sent from vi to vi+1 at any given

timeslot.

Thus, we can consider that a service time in our queuing system is geometrically

distributed with parameter p. The service time is distributed over the set {0, 1, 2, ...},

which means that a customer that enters an empty queue at the end of the timeslot
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can be immediately serviced with probability p (since it is the beginning of the next

timeslot). A customer cannot pass more than one node (queue) in a single timeslot, so

we define the transmission time as one timeslot. I.e., the time needed for a customer

to pass through k queues is the sum of the waiting time in each queue, service time

in each queue, and additional k timeslots for transmission from queue to queue.

The following lemma shows that the service rate can be bounded from below by

an exponential random variable.

Lemma 2.2. Let X be a geometric random variable with parameter p and supported

on the set {0, 1, 2, . . .}, i.e., for k ∈ Z+: Pr (X = k) = (1 − p)kp, and let Y be an

exponential random variable with parameter p. Then, for all x ∈ R+:

Pr (X ≤ x) ≥ Pr (Y ≤ x) = 1− e−px, (2.1)

i.e., a random variable Y ∼ Exp(p) stochastically dominates the random variable

X ∼ Geom(p).

Proof. For a geometric random variable X with a success probability p and supported

on the set {0, 1, 2, 3, ...}:

Pr (X > x) = (1− p)x+1, for x ∈ Z+

and

Pr (X > x) = (1− p)bxc+1 , for x ∈ R+.

So, for x ∈ R+,

Pr (X ≤ x) = 1− (1− p)bxc+1 ≥ 1− (1− p)x = 1− eln(1−p)x

and since ln(1 − p) ≤ −p we have: Pr (X ≤ x) ≥ 1 − e−px. Hence, if Y ∼ Exp(p)

we obtain: Pr (X ≤ x) ≥ 1 − e−px = Pr (Y ≤ x), i.e., random variable Y ∼ Exp(p)

stochastically dominates the random variable X ∼ Geom(p).
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We can now assume that the service time is exponentially distributed with pa-

rameter µ = p. This assumption decreases the rate of transmission of helpful messages,

and therefore will only increase the stopping time. The last is true since the probabil-

ity that a customer will be serviced by time t1 in a geometrical server is higher than

in an exponential server, and thus each customer in a network with geometric servers

will arrive at vn by time t2 with higher probability than in a network with exponential

servers. The formal justification of this step is given later in Lemma 2.5, which proves

this assertion for trees and not only for the line.

To this end, we have converted our network to a standard network of queues

where the network is open, external arrivals to nodes will form a Poisson process,

service times are exponentially distributed, and the queues are first come first serve

(FCFS). For a queue i let µi denote the service rate and λi the total arrival rate.

We present now Jackson’s theorem for open networks; a proof of this theorem can be

found in [19].

Jackson’s Theorem. In an open Jackson network of n queues where the utilization

ρi = λi
µi

is less than 1 at every queue, the equilibrium state probability distribution

exists, and for state (k1, k2, . . . , kn) is given by the product of the individual queue

equilibrium distributions: π(k1, k2, ..., kn) = Πn
i=1ρ

ki
i (1− ρi).

We would like to use Jackson’s theorem to conclude that there is an equilibrium

state for our network of queues and that in the equilibrium state the lengths of the

queues are independent. For Jackson’s theorem to hold we need to appropriately

define the arrival rate to the queues, so we will slightly change our queuing network.

The initial state of our system is that at every queue we have one real customer

(see Fig. 2.2 (b)). Now we take all the n real customers out from the system and let

them enter back via the leftmost queue with a predefined arrival rate. Clearly, this

modification increases the stopping time. We define the real customers’ arrivals as a

Poisson process with rate λ = µ
2
. So, ρi = λi

µi
= 1

2
< 1 for all queues (i ∈ [1..n]).
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Now, according to Jackson’s theorem there exists an equilibrium state. So, our

last step is to ensure that the lengths of all queues at time t = 0 are according to the

equilibrium state probability distribution. We add dummy customers to all the queues

according to the stationary distribution. By adding additional dummy customers (we

call them dummy since their arrivals are not counted as a rank increment) to the

system, we make the real customers wait longer in the queues, thus increasing the

stopping time. Our queuing network with the above modifications is illustrated in

Fig. 2.2 (c), where the real customers are dark, and the dummy customers are bright.

We will compute the stopping time in two phases. By the end of the first phase,

node vn will finish the algebraic gossip task. By the end of the second phase, all the

nodes will finish the task. For the first phase, we find the time it takes the n’th (last)

real customer to arrive at the rightmost node, i.e., node vn. By that time, the rank of

node vn will become n and it will finish the algebraic gossip protocol (i.e., it received

n helpful messages). Let us denote this time (in timeslots) as t
−→arr + t

−−−→cross, where t
−→arr

is the time needed for the n’th customer to arrive at the first queue, and t
−−−→cross is the

time needed for the n’th customer to pass through all the n queues in the system.

For the second phase, let us assume that after t
−→arr + t

−−−→cross timeslots (when vn

finishes the algebraic gossip task) all nodes except node vn forget all the information

they have. So, the rank of all nodes except vn is 0. Let us now analyze the information

flow from the rightmost node in the path (vn) to the leftmost node (v1). In the same

way, we will represent all helpful messages that node vn will send as customers in

our queuing system. In order to use Jackson’s Theorem, we will again remove all the

real customers from the system and will inject them to the queue of node vn with a

Poisson rate λ = µ/2. We also fill all the queues in the system with dummy customers

in order to achieve queue lengths that correspond to the equilibrium state distribution.

Clearly, arrival of a real customer at some node vi (i 6= n) will increase the rank of

that node. So, after the last real customer arrives at node v1, the ranks of all nodes
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will be n, and the algebraic gossip task will be finished.

Using the same equilibrium state analysis as before, we define the time it takes

the n’th (last) real customer to arrive at the rightmost node vn as t
←−arr, and the time

to cross all the n queues – arriving at node v1 – as t
←−−−cross.

So, t = t
−→arr + t

−−−→cross + t
←−arr + t

←−−−cross is an upper bound for the number of timeslots

needed to complete the task. Now we find the upper bound for tx, x ∈ {−→arr,−−→cross,←−arr,←−−cross}

and then we will use union bound to obtain an upper bound on t.

From Jackson’s Theorem, it follows that the number of customers in each queue

is independent, which implies that the random variables that represent the waiting

times in each queue are independent. To continue with the proof we need the following

lemmas (the first is a classical result from queuing theory).

Lemma 2.3 ([49], section 4.3). Time needed to cross one M/M/1 queue (a queuing

system in which interarrival and service times are distributed exponentially with pa-

rameters λ and µ, respectively) in the equilibrium state has an exponential distribution

with parameter µ− λ.

Lemma 2.4. Let Y be the sum of n independent and identically distributed exponential

random variables (each with parameter µ > 0) and E [Y ] = n
µ

. Then, for α > 1:

Pr (Y < αE [Y ]) > 1− (2e−α/2)n. (2.2)

Proof. Let Y =
∑n

i=1Xi, where Xi are i.i.d. exponential random variables (each with

parameter µ > 0). The generating function of X is given by:

GX(s) = E
[
esX
]

=

∫ ∞
0

esxfX(x)dx.

For any s < µ: GX(s) = µ
µ−s . Thus, the generating function of Y (sum of independent

Xi’s) for s < µ: GY (s) = (GX(s))n =
(

µ
µ−s

)n
. Now, we will apply a Chernoff bound
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on Y . For µ > s ≥ 0:

Pr (Y ≥ αE [Y ]) = Pr

(
Y ≥ α

n

µ

)
= Pr

(
esY ≥ es·α

n
µ

)
≤

E
[
esY
]

es·α
n
µ

=
GY (s)

es·α
n
µ

.

By letting s = µ/2 we get:

Pr (Y ≥ αE [Y ]) ≤

(
µ

(µ− µ
2
)eα

µ
2µ

)n

=
(
2e−α/2

)n
and thus:

Pr (Y < αE [Y ]) > 1−
(
2e−α/2

)n
.

Recall that: µ = p ≥ 1
n
(1 − 1

q
) so µ ≥ q−1

qn
≥ 1

2n
for q ≥ 2. The random

variable t
−→arr is the sum of n independent random variables distributed exponentially

with parameter µ/2. From Lemma 2.3 we obtain that t
−−−→cross is the sum of n independent

random variables distributed exponentially with parameter µ−λ = µ
2
. It is clear that

t
←−arr is distributed exactly as t

−→arr and t
←−−−cross is distributed exactly as t

−−−→cross. Therefore

(for µ = 1
2n

): E [tx] =
∑n

i=1
2
µ

= 4n2. Using Lemma 2.4 (with α = 2) we obtain for

x ∈ {−→arr,−−→cross,←−arr,←−−cross}:

Pr
(
tx ≤ 8n2

)
≥ 1−

(
2
e

)n
. (2.3)

Using a union bound we get that:

Pr
(
t ≤ 32n2

)
≥ Pr

(
∩xtx ≤ 8n2

)
(2.4)

= 1− Pr
(
∪xtx > 8n2

)
(2.5)

≥ 1− 4
(

2
e

)n
. (2.6)

It is clear that Pr (t ≤ 32n2) increases when µ increases (faster server yields smaller

waiting time); hence, the above inequality holds for any µ ≥ 1
2n

.
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So, for the asynchronous time model and EXCHANGE we obtain an upper bound

for the high probability stopping time: t̂ = O(n2) in timeslots, and thus r̂ = O(n), in

rounds. Let us now find an upper bound for the expected number of rounds needed

to complete the task – E [r]:

E [r] = 1
n
E [t] = 1

n
E
[
t
−→arr + t

−−−→cross + t
←−arr + t

←−−−cross
]

(2.7)

= 4
n
E [tx] = 4

n
4n2 = 16n = O(n). (2.8)

The lower bound is clear since in order to finish the algebraic gossip task each

node has to receive at least n messages, so at least n2 messages need to be sent and

received. Since in each timeslot at most 2 messages (using EXCHANGE) are sent, we

get: t̂ = Ω(n2), thus r̂ = Ω(n), and E [r] = Ω(n). The result of Theorem 2.2 is then

follows: E[r] = Θ(n), and r̂ = Θ(n).

2.4 Algebraic Gossip on Arbitrary Graphs

Now we are ready to prove our main results. First, we present the upper bound for

any graph as a function of its maximum degree ∆, and then we give corollaries that

are applications of this result for more specific cases.

Theorem 1 (restated). For the asynchronous time model and for any graph Gn of

size n with maximum degree ∆, the stopping time of algebraic gossip is O(∆n) rounds

both in expectation and with high probability.

Proof. Consider an arbitrary graph Gn of size n with a maximum degree ∆ and a

vertex v. We pick any spanning tree rooted at v and will only consider messages

that are sent from the tree edges towards v, i.e., we ignore all messages received from

non-tree edges or in the opposite direction (see Fig. 2.3 (b)).

Now, let us concentrate on the information flow towards node v from all other

nodes. As in the proof of Theorem 2.2, we will define a queuing system with a queue
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v

(a)

v

(b)

v

µ = p = 1
n∆

(c)

v
µ µ µ

(d)

v
µ µ µ

λ = µ/2

(e)

Figure 2.3: Reduction of Algebraic Gossip to a system of queues. (a) – Initial graph G.

(b) – Spanning tree rooted at v, Gv. (c) – System of queues Qtreen . (d) – System of queues

Qlinelmax
. Stopping time of Qlinelmax

is larger than of Qtreen . (e)–Taking all customers out of the

system and use Jackson theorem for open networks.

at each node (see Fig. 2.3 (c)). The following lemma shows that we can model the

service time at each queue as an exponential random variable with parameter µ = p.

Let Tn be a tree of size n rooted by node v. Let N (Tn,X ) be a network of n

queues where for each node u in Tn there is a queue and the queue output is connected

to the input of the queue corresponding to the parent of u in Tn. In addition, each

queue is of infinite size and initially has one customer in the queue (see Fig. 2.3)

(c)). The servers of all the queues work with a service time distributed as X . Let

t(Tn,X ) be the random variable representing the time by which all the n customers

in N (Tn,X ) arrive to the queue of v (we assume v does not serve the customers).
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Lemma 2.5. For any tree Tn and 0 < p ≤ 1:

Pr (t(Tn,Geom(p)) ≤ τ) ≥ Pr (t(Tn,Exp(p)) ≤ τ) , for all τ ≥ 0.

Proof. We will prove this lemma by showing that for each customer c and for each

queue u on the unique path that c traverses to the root, the probability that c reaches

u before time τ is larger in N (Tn,Geom(p)) than in N (Tn,Exp(p)).

Consider a reverse topological order of the nodes in Tn (spanning tree of Gn

rooted at v), v1, v2, . . . , vn = v, i.e., for every node vi, 1 ≤ i < n, the parent of vi is

a node vj and j > i. For a node vi let Ci be the set of customers that it needs to

serve on their way to the root. For a node vi and a customer c ∈ Ci let Gic(τ) denote

the event that c reached vi before time τ in N (Tn,Geom(p)) and let E ic(τ) be defined

similarly for N (Tn,Exp(p)). We claim that for each 1 ≤ i ≤ n, and each c ∈ Ci,

Pr(Gic(τ)) ≥ Pr(E ic(τ)), and the proof will be by induction on i.

Induction basis: Pr(G1
v1(τ)) ≥ Pr(E1

v1(τ)). By definition, v1 is a leaf with one

customer, itself, and no children, so Pr(G1
v1(τ)) = Pr(E1

v1(τ)) = 1 for τ ≥ 0.

Induction step: Assume the claim is true for 1 ≤ i < n − 1 and we will prove it is

true for i + 1. If vi+1 is a leaf, then we are done since this is an identical case to the

base case. Assume vi+1 is not a leaf. The case c = vi+1 is trivial so consider c ∈ Ci+1

that is not vi+1. Then c must reach vi+1 via one of its children, let it be vk where

k < i+ 1. Then by the induction assumption Pr(Gkc (τ ′)) ≥ Pr(Ekc (τ ′)) for any τ ′, and

from Lemma 2.2 for any τ the probability that a customer will be served by time τ is

larger in N (Tn,Geom(p)) than in N (Tn,Exp(p)), so we have a faster arrival rate and

a faster service rate and the lemma follows.

The result of the above Lemma 2.5 is that any probabilistic upper bound on the

stopping time of v in a tree network with exponential servers holds for the same tree

network with geometric servers (both with the same parameter p and initially one

customer at each queue).
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Once all real customers arrive at v, it will reach rank n and will finish the

algebraic gossip task. Now we have to calculate the service time parameter p. The

degree of each node in Gn is at most ∆. Each node in Tn, except v, has a parent.

Since we virtually remove (i.e., ignore) all edges that do not belong to Tn, at each node

there is exactly one edge that goes towards the root v. Therefore, the probability that

a customer will be serviced (transmitted towards v) at the end of a given timeslot is

at least: p ≥
(

2
n
· 1

∆

)
(1− 1

q
), where 2

n
· 1

∆
= 2

n∆
is the probability that in the EXCHANGE

algorithm a message will be sent on the edge that goes towards v during one timeslot,

and (1− 1
q
) is the minimal probability that the message is helpful (Lemma 2.1). Clearly,

p ≥ 1
n∆

for q ≥ 2, so we set our exponential servers to work with rate µ = 1
n∆

.

Theorem 2.3. Let Qtree
n be a network of n nodes arranged in a tree topology, rooted

at the node v. Each node has an infinite queue, and a single exponential server with

parameter µ. Initially, there is a single customer in every queue. The time by which

all n customers leave the network via the root node v is t(Qtree
n ) = O(n/µ) with high

probability. Formally, for any α > 1:

Pr
(
t(Qtree

n ) < α4n/µ
)
> 1− 2(2e−α/2)n. (2.9)

The main idea of the Theorem 2.3 proof is to show that the stopping time of

the network Qtree
n (i.e., the time by which all the customers leave the network) is

stochastically 3 smaller or equal to the stopping time of the systems of lmax queues

arranged in a line topology – Qline
lmax

(lmax is the depth of the tree Qtree
n ). Then, we

make the system Qline
lmax

stochastically slower by moving all the customers out and

make them enter the system via the farthest queue with the rate λ = µ/2. Finally,

we use Jackson’s Theorem for open networks (similar to the proof of Theorem 2.2) to

find the stopping time of the system. See Fig. 2.3 for the illustration. The full proof

of Theorem 2.3 can be found in Section 2.7.

3Stochastic dominance is formally defined in Section 2.7.
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Using Theorem 2.3 for the tree Tn and with µ = 1
∆n

, we obtain the stopping

time of the node v: tv < α4n2∆ with probability of at least 1− 2(2e−α/2)n.

The same analysis holds for any node u ∈ V , i.e., we consider a spanning tree

Tn rooted at u and find the stopping time of u, tu. So, we can use a union bound to

obtain the stopping time of all the nodes in Gn:

Pr

(⋂
u∈V

(
tu < α4n2∆

))
≥ 1− 2n

(
2e−α/2

)n
. (2.10)

By letting α = 2 we obtain:

Pr

(⋂
u∈V

(
tu < 8n2∆

))
≥ 1− 2n

(
2
e

)n
. (2.11)

So, we determined that the stopping time of the algebraic gossip in Gn is O(∆n2)

timeslots with high probability and thus: r̂ = O(∆n).

The high probability bound of Eq. (2.10) is true for any α > 1 and therefore

strong enough to bound the expectation.

Pr
(
t ≥ 4αn2∆

)
≤ 2n(2e−α/2)n.

For a positive integer random variable t holds: E [t] =
∑∞

i=1 Pr(t ≥ i). So, we have:

E [t] =
∞∑
i=1

Pr(t ≥ i) (2.12)

=
8n2∆−1∑
i=1

Pr(t ≥ i) +
∞∑

i=8n2∆

Pr(t ≥ i) (2.13)

≤ 8n2∆ +
∞∑

i=8n2∆

Pr(t ≥ i) (2.14)

≤ 8n2∆ + 4n2∆
∞∑
α=2

Pr(t ≥ 4αn2∆). (2.15)

The last inequality is true since ∀i ≤ j,Pr(t ≥ i) ≥ Pr(t ≥ j) and thus we can replace
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all Pr(t ≥ i) for i ∈ [4αn2∆, ..., 4(α+ 1)n2∆− 1] with 4n2∆×Pr(t ≥ 4αn2∆). Hence,

E [t] ≤ 8n2∆ + 4n2∆
∞∑
α=2

Pr(t ≥ 4αn2∆) (2.16)

≤ 8n2∆ + 4n2∆
∞∑
α=2

2n(2e−
α
2 )n (2.17)

= 8n2∆ + 8n3∆2n
∞∑
α=2

(e−n/2)α (2.18)

= 8n2∆ + 8n3∆2n
e−n

1− e−n/2
(2.19)

= 8n2∆ +
8n3∆

1− e−n/2

(
2

e

)n
, (2.20)

for n > 6 : (2.21)

≤ 8n2∆ + 8n2∆. (2.22)

Now we can finish the proof of Theorem 2.1 by concluding:

E[t] = O(∆n2) and E[r] = O(∆n). (2.23)

From Theorem 2.1, and since the maximum degree ∆ is at most n, we can derive

a general upper bound of algebraic gossip on any graph.

Corollary 2.1. For the asynchronous time model and any graph Gn of size n, the

gossip stopping time of the algebraic gossip task is O(n2) rounds, both in expectation

and with high probability.

We can use Theorem 2.1 to obtain a tight linear bound of algebraic gossip on

graphs with a constant maximum degree. We note that previous bounds for this case

are not tight, for example, for the ring graph the bound of [47] is O(n2).

Corollary 2.2. For the asynchronous time model and any graph Gn of size n with a

constant maximum degree ∆, the gossip stopping time of the algebraic gossip task is

O(n) rounds both in expectation and with high probability.
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We now show that the upper bound O(∆n), presented in Theorem 2.1, is tight

in the sense that for almost any ∆ there exists a graph for which algebraic gossip takes

Ω(∆n) rounds.

Theorem 2.4. For any constant ε > 0 and 2 ≤ ∆ ≤ (1−ε)n, and for the asynchronous

time model there exists a graph Gn of size n with maximum degree ∆ for which algebraic

gossip takes Ω(∆n) rounds both in expectation and with high probability. In particular,

there is a graph for which the stopping time is Ω(n2) rounds both in expectation and

with high probability.

Proof. In order to prove this result we will need the following lemma.

Lemma 2.6. Let X be a sum of m independent and identically distributed geometric

random variables with parameter p, i.e., X =
∑m

i=1 Xi. Then, for any positive integer

k < m/p

Pr (X > k) ≥ 1−

(
m

e
m−kp
m kp

)−m
. (2.24)

Proof. First, we will define Y as the sum of k independent Bernoulli random variables,

i.e., Y =
∑k

i=1 Yi, where Yi ∼ Bernoulli(p). Let us notice that:

Pr (X ≤ k) = Pr (Y ≥ m)

The last is true since the event of observing at least m successes in a sequence of k

Bernoulli trials implies that the sum of m independent geometric random variables is

no more than k. From the other side, if the sum of m independent geometric random

variables is no more than k it implies that m successes occurred not later than the

k-th trial and thus Y ≥ m.

Now we will use a Chernoff bound for the sum of independent Bernoulli random

variables presented in [46]: For any δ > 0 and µ = E [Y ]:

Pr (Y ≥ (1 + δ)µ) <

(
eδ

(1 + δ)1+δ

)µ
.
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Since µ = E [Y ] = kp, and by letting δ = m−kp
kp

, we obtain:

Pr (Y ≥ (1 + δ)µ) = Pr (Y ≥ m) <

(
m

e
m−kp
m kp

)−m
.

So:

Pr (X ≤ k) <

(
m

e
m−kp
m kp

)−m
,

and thus the result follows.

Let us construct a graph Gn with |V (Gn)| = n nodes and maximum degree

∆(Gn) = ∆. Consider two arbitrary graphs G′ and G′′ with certain maximum degrees

∆(G′) and ∆(G′′), respectively, and with total number of nodes n (|V (G′)|+|V (G′′)| =

n). We now distinguish two cases: ∆ ≤ n/2 and ∆ > n/2. For the first case

(∆ ≤ n/2), let u ∈ V (G′) and v ∈ V (G′′), such that du = ∆(G′) = ∆ − 1 and

dv = ∆(G′′) = ∆− 1. We construct G by interconnecting G′ and G′′ with a new edge

(u, v), i.e., V (Gn) = V (G′) ∪ V (G′′) and E(Gn) = E(G′) ∪ E(G′′) ∪ (u, v). See Fig.

2.4 (a) for an illustration.

For the second case (∆ > n/2), the only difference in construction of Gn is the

degree of v ∈ V (G′′), which is now dv = ∆(G′′) = n−∆− 1.

In order to finish algebraic gossip on G, at least max {|V (G′)|, |V (G′′)|} ≥ n
2

messages should be sent over the edge (u, v). Using the fastest gossip variation –

EXCHANGE, the probability p that a helpful message will be sent in one timeslot over

the edge (u, v) is bounded by the probability that any message will be sent over (u, v),

so: p ≤ 1
n

(
1

∆(G′)+1
+ 1

∆(G′′)+1

)
.

For the first case (∆ ≤ n/2) we obtain:

p ≤ 1
n

(
1
∆

+ 1
∆

)
= 2

n∆
. (2.25)

For the second case we get:

p ≤ 1
n

(
1
∆

+ 1
n−∆

)
= 1

∆(n−∆)
≤ 1

∆(n−(1−ε)n)
= 1

n∆ε
. (2.26)
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We can see that the first case can be viewed as the second with ε = 0.5; thus, we can

further analyze only the second case. The number of timeslots, t, needed to send n/2

helpful messages over the edge (u, v), can be viewed as a sum of n/2 geometric random

variables with parameter p. Clearly, E [t] = n
2
· 1
p

= n2∆ε
2

= Ω(∆n2) timeslots in both

cases. Using Lemma 2.6 with k = bE [t] /2c = bn2∆ε/4c, p = 1
n∆ε
· n2∆ε/4
bn2∆ε/4c ≥

1
n∆ε

(we

took p even larger than its maximum value; this will make calculations nicer and will

not affect the bound), and m = n/2 we get:

Pr
(
t >

⌊
n2∆ε/4

⌋)
≥ 1−

(
m

e
m−kp
m kp

)−m
(2.27)

= 1−
(√

e/2
)n/2

. (2.28)

It is clear that Pr (t ≥ k) increases when p decreases (the smaller probability of

success – the larger the probability to finish later). Hence, the above inequality holds

for any p ≤ 1
n∆ε

.

Thus, the number of timeslots needed is at least bn2∆ε/4c w.h.p. and n2∆ε/2 in

expectation. So, the total stopping time of the algebraic gossip protocol on the graph

G (measured in rounds) is: r̂ = Ω(∆n), and E [r] = Ω(∆n), where 2 ≤ ∆ ≤ (1 − ε)n

for any constant ε > 0. The lower bound of Ω(n2) rounds is achieved, for example, in

a barbell graph – two cliques interconnected with a single edge (see Fig. 2.4 (b)).

2.5 EXCHANGE Can Be Unboundedly Faster Than PUSH

or PULL

As we presented earlier, there are three gossip variations: PUSH, PULL, and EXCHANGE.

In PUSH or PULL there is only one message sent between the communication partners,

in EXCHANGE two messages are sent. Thus, the total message complexity for the same

number of communication rounds is doubled. We would like to know: Is the stop-
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Figure 2.4: (a) Graph Gn, constructed from G′ and G′′, for the proof of Theorem 2.4.

(b) An example of a Gn graph with ∆(Gn) = n/2: barbell graph (two cliques of size

n/2 connected with a single edge).

ping time decrease when using EXCHANGE worth the doubling message complexity? In

this section we give the answer by presenting a graph for which the EXCHANGE gossip

algorithm is unboundedly faster than the PUSH or PULL algorithms.

Theorem 2.5. For the star graph Sn (which is a tree of n nodes with one node

having degree n− 1 and the other n− 1 nodes having degree 1), algebraic gossip using

EXCHANGE is unboundedly better than using PUSH or PULL algorithms. Formally, for

A ∈ {PUSH, PULL}:

lim
n→∞

r̂(A)

r̂(EXCHANGE)
→∞, and lim

n→∞

E [r(A)]

E [r(EXCHANGE)]
→∞. (2.29)

The proof of this theorem is a direct consequence of the following lemmas.

Lemma 2.7. For the star graph Sn, algebraic gossip using PUSH takes Ω(n2) rounds

with high probability and in expectation.

Proof. We are interested in a lower bound, so we will consider the minimum number

of rounds to complete the task. The center node can finish the algorithm after one

round since all other nodes will send (PUSH) to it their messages and in the best case

all these messages will be helpful, so we ignore this phase. Now, the center node

should send (PUSH) to every other node n − 1 independent linear equations. In the
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synchronous time model, the center node wakes up exactly once in a round. Thus, the

number of rounds needed to PUSH n−1 messages to all the n−1 other nodes is at least

(n− 1) · (n− 1) with probability 1. In the asynchronous model, the center node will

wake up in a given timeslot with probability 1/n; thus, it will need Ω(n·(n−1)·(n−1))

timeslots (to PUSH n − 1 messages to all the n − 1 other nodes) in expectation and

with the high probability (sum of n independent geometric random variables). Thus,

for both time models, the number of rounds needed is Ω(n2).

Lemma 2.8. For the star graph Sn, algebraic gossip using PULL takes Ω(n log n)

rounds with high probability and in expectation.

Proof. First, we give the following claim for the coupon collector problem [46].

Claim 2.1. Let X be the r.v. for the number of coupons needed to obtain n distinct

coupons (i.e., to obtain at least one coupon of each type), then:

E[X] = Θ(n log n) and w.h.p. X = Θ(n log n).

Proof. The first result (the expected value) and the upper bound w.h.p. are well

known; see for example [48, 46]. We have not found a direct reference for the lower

bound, namely that w.h.p. X = Ω(n log n), so we give an outline here. Let Ex de-

note the event that all n different coupons have been collected after X steps. Let

X =
∑n

i=1Xi where Xi is an r.v. that denotes the number of coupons of type i col-

lected. Clearly Xi’s are dependent. To overcome this difficulty we will use Poisson

approximation of the binomial random variable Xi [46]. Consider n Poisson indepen-

dent random variables Yi (i ∈ [1...n]) with mean λ = X
n

. Each variable represents the

number of coupons of type i. Thus, the expected total number of coupons collected

is X. Let Ey denote the Poisson version of the event Ex, i.e., that after collecting the

different types of coupons independently with Poisson distribution with λ, we have at

least one type of each coupon. Since Yi’s are i.i.d., we have Pr (Ey) = (Pr (Yi ≥ 1))n.
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It is clear that both Pr (Ex) and Pr (Ey) are monotonically increasing with X; there-

fore we can use the Poisson approximation that states that Pr (Ex) ≤ 2 Pr (Ey) ([46],

Corollary 5.11). Now, assume X = n lnn− n ln lnn and we have:

Pr (Ey) =
(
1− e−(lnn−ln lnn)

)n
=

(
1− lnn

n

)n
.

Now we want to show that
(
1− lnn

n

)n ≤ 1
n
. Let:

z = n

(
1− lnn

n

)n
.

Then we obtain:

ln z = lnn+ n ln

(
1− lnn

n

)
.

Using Taylor expansion we get:

ln

(
1− lnn

n

)
≤ − lnn

n
.

So:

ln z ≤ lnn− n lnn

n
= 0.

Since ln z ≤ 0 we get that z ≤ 1 which yields:
(
1− lnn

n

)n ≤ 1
n
. So, Pr (Ex) ≤

2 Pr (Ey) ≤ 2
n

and thus:

Pr (X ≥ n lnn− n ln lnn) = 1− 2

n
.

The center node will finish the algorithm once it receives (PULL) a helpful message

from every other node. Thus, the center node has to reach (PULL) every other node

at least once. In the synchronous time model, the center node will transmit (wake

up) exactly once in a round. Reaching every other node at least one time is exactly

the coupon collector problem, so (using Claim 2.1): r̂ = Ω(n log n), and E [r] =
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Ω(n log n) rounds. In the asynchronous model, the center node will wake up in a given

timeslot with probability 1/n; thus, it needs Ω(n · n log n) timeslots in order to wake

up Ω(n log n) times in expectation and with high probability (lower bound on sum of

i.i.d. geometric r.v.’s).

Lemma 2.9. For the star graph Sn, algebraic gossip using EXCHANGE takes O(n)

rounds with high probability and in expectation.

Proof. To prove Lemma 2.9 we will use the following claim.

Claim 2.2. Let Xi be independent geometric random variables with parameter p, and

let X =
∑n

i=1Xi. For p ≥ 1
2
, and α > 1:

Pr (X ≥ 2nα) ≤
(
21.5−α)n . (2.30)

Proof. In order to obtain this upper bound on the sum of n independent geometric

random variables we will use a Chernoff bound. The generating function of a geometric

random variable Xi is given by:

GXi(t) = E
[
etXi

]
=

pet

1− (1− p)et
, where t < − ln(1− p).

The generating function of the sum of independent random variables is a multiplication

of their generating functions. Thus:

GX(t) = E
[
et

∑n
i=1Xi

]
= E

[
entXi

]
=

(
pet

1− (1− p)et

)n
.

Now, we will apply Markov’s inequality to obtain an upper bound on X. For t ≥ 0:

Pr (X ≥ 2nα) = Pr
(
etX ≥ et2nα

)
≤

E
[
etX
]

et2nα
=
GX(t)

et2nα
.

By letting t = −0.5 ln(1− p) we get:

Pr(X ≥ 2nα) ≤
(

(1− p)α−0.5p

1− (1− p)0.5

)n
.
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It is clear that Pr (X ≥ 2nα) decreases when p increases. Thus, to obtain an upper

bound, we will substitute p with its minimal value, i.e., 1/2, and we get the result:

Pr (X ≥ 2nα) ≤
(

(1− 0.5)α−0.50.5

1− (1− 0.5)0.5

)n
≤
(
2 · 0.5α−0.5

)n
=
(
21.5−α)n .

First, we consider the synchronous time model. Let us split the task into two

phases. The first phase is the time (in rounds) r1 until the center node v1 learns all

the initial messages, i.e., dim(Sv1(t)) = n. The second phase is the time (in rounds)

r2 it takes v1 to distribute the information to all the nodes.

Initially, every node u ∈ V \{v1} is helpful to v1. By Lemma 2.1, a message sent

from u to v1 will be helpful with probability of at least 1 − 1
q
; thus, after n rounds,

a node u will send a helpful message to v1 with probability of at least 1 −
(

1
2

)n
(for

q > 2). Using union bound we can find the probability that all the nodes u ∈ V \{v1}

will send a helpful message to v1 after n rounds:

Pr(r1 > n) ≤
∑

u∈V \{v1}

(
1

2

)n
≤ n

(
1

2

)n
. (2.31)

Now, from the beginning of phase two, dim(Sv1) = n and hence the node v1 will

be helpful to every other node until the rank of that node becomes n. From Lemma

2.1, a message transmitted to some node from a node helpful to it, will increase its

dimension with probability p ≥ 1− 1
q
.

Let us define Xu
i as the number of rounds needed for v1 to increase the rank

of some node u ∈ V \{v1}. It is clear that Xu
i has a geometric distribution with

parameter p. We are interested to find Xu =
∑n

i=1X
u
i , which represents the number

of rounds by which the rank of node u will become n. Using Claim 2.2 (and the fact
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that for q > 2, p = 1− 1
q
> 1

2
), we obtain for any α > 1 that:

Pr(Xu < 2αn) ≥ 1− (21.5−α)n. (2.32)

Using union bound, we obtain the probability that ranks of all nodes will become n

after 2αn rounds:

Pr
(
∪u∈V \{v1}X

u ≥ 2αn
)
≤

∑
u∈V \{v1}

Pr(Xu ≥ 2αn) (2.33)

≤ n
(
21.5−α)n , (2.34)

and thus:

Pr
(
∩u∈V \{v1}X

u < 2αn
)
≥ 1− n

(
21.5−α)n . (2.35)

So,

Pr(r2 < 2αn) ≥ 1− n
(
21.5−α)n , (2.36)

and for α = 2:

Pr(r2 < 4n) ≥ 1− n
(

1√
2

)n
. (2.37)

Combining the two phases together, i.e., r ≤ r1 + r2, we have:

Pr(r > 5n) ≤ Pr(r1 ≥ n) + Pr(r2 ≥ 4n) (2.38)

≤ n

(
1

2

)n
+ n

(
1√
2

)n
(2.39)

≤ 2n

(
1√
2

)n
, (2.40)

and thus: r̂ = O(n).

Let us now find an upper bound for the expected number of rounds needed to

complete the task, E[r]. Since r ≤ r1 + r2, we get: E [r] ≤ E [r1] + E [r2]. During the

first phase, each node u ∈ V \ {v1} will send a helpful message to v1 with probability
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of at least 1
2
. Thus, E [r1] ≤ 2n. The high probability bound of (2.36) allow us to

show that for sufficient large n:

E[R2] ≤ 4n+ 1. (2.41)

In order to prove the Equation 2.41, we first rewrite the high probability result of Eq.

(2.36) for r2 with α > 1:

Pr (r2 ≥ 2nα) ≤ n(21.5−α)n.

For a positive integer random variable r2 holds: E [r2] =
∑∞

i=1 Pr(r2 ≥ i). So, we have:

E [r2] =
∞∑
i=1

Pr(r2 ≥ i)

=
4n−1∑
i=1

Pr(r2 ≥ i) +
∞∑
i=4n

Pr(r2 ≥ i)

≤ 4n+
∞∑
i=4n

Pr(r2 ≥ i)

≤ 4n+ 2n
∞∑
α=2

Pr(r2 ≥ 2nα).

The last inequality is true since ∀i ≤ j,Pr(r2 ≥ i) ≥ Pr(r2 ≥ j) and thus we can

replace all Pr(r2 ≥ i) for i ∈ [2nα, ..., 2n(α + 1)− 1] with 2n× Pr(r2 ≥ 2nα). Hence,

E [r2] ≤ 4n+ 2n
∞∑
α=2

Pr(r2 ≥ 2nα)

≤ 4n+ 2n
∞∑
α=2

n(21.5−α)n

= 4n+ 2n2 · 21.5n

∞∑
α=2

(2−n)α

= 4n+ 2n2 · 21.5n 2−2n

1− 2−n

= 4n+
2n2 · 20.5n

2n − 1
,

≤ 4n+ 1 , for n > 19.
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Hence, we obtain: E [r] = O(n). In order to justify the result for the asynchronous

time model (in which a node wakes up at a given timeslot with probability 1/n), we

notice that a node v1 will wake up O(n) times after at most O(n2) timeslots (or O(n)

rounds) with expectation and with high probability (sum of n i.i.d. geometric r.v.’s).

Thus, the lemma holds for both time models.

Since for A ∈ {PUSH, PULL}: r̂(A) = Ω(n log n) and E [r(A)] = Ω(n log n) (Lem-

mas 2.7 and 2.8), and from Lemma 2.9: r̂(EXCHANGE) = O(n) and E [r(EXCHANGE)] =

O(n), we are ready to conclude that:

lim
n→∞

r̂(A)

r̂(EXCHANGE)
→∞, and lim

n→∞

E [r(A)]

E [r(EXCHANGE)]
→∞.

2.6 Algebraic Gossip with Synchronous Time Model,

and with PUSH and PULL

In this section we give theorems and corollaries that extend the results presented in

the chapter to both time models (synchronous and asynchronous), and to the three

gossip algorithms (PUSH, PULL, and EXCHANGE).

The first theorem shows that the general upper bound for algebraic gossip also

holds for the synchronous time model.

Theorem 2.6. For the synchronous time model and for any graph Gn with maxi-

mum degree ∆, the stopping time of algebraic gossip is O(∆n) rounds with high prob-

ability.

Proof. The proof for the synchronous time model is almost the same as in the asyn-

chronous case. The analysis will be done in rounds instead of timeslots. The proba-

bility that a customer will be serviced (transmitted towards v) at the end of a given

round is at least: p ≥
(
1− (∆−1

∆
)2
)

(1− 1
q
), where

(
1− (∆−1

∆
)2
)

= 2
∆
− 1

∆2 is the prob-

ability that in the EXCHANGE algorithm at least one message will be sent on a specific
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edge (in a specific direction) during one round, and (1− 1
q
) is the minimal probability

that the message is helpful (Lemma 2.1).

p ≥ ( 2
∆
− 1

∆2 )(1− 1
q
) ≥ 1

∆
(1− 1

q
) ≥ 1

2∆
for q ≥ 2.

If node i has received a message during a specific round from node j it will ignore

the additional message that can arrive from the same node j at the same round (this

can happen if i chooses j and j chooses i in the EXCHANGE gossip scheme in one round).

Clearly, this assumption can only increase the stopping time since we ignore (possibly

helpful) information.

tx, x ∈ {−→arr,−−→cross} are measured now in rounds and not in timeslots. Since

µ = p ≥ 1
2∆

, using Lemma 2.4 (with α = 2 and E [tx] = 2n
µ

= 4n∆), we obtain:

Pr (tx < 8n∆) > 1−
(

2
e

)n
, for x ∈ {−→arr,−−→cross}.

The rest of the proof is the same as in the asynchronous case and thus the result

follows.

The following theorem proves that the worst-case lower bound for algebraic gos-

sip also holds for the synchronous time model.

Theorem 2.7. For any constant ε > 0 and 2 ≤ ∆ ≤ (1−ε)n, and for the synchronous

time model, there exists a graph Gn of size n with maximum degree ∆ for which

algebraic gossip takes Ω(∆n) rounds both in expectation and with high probability.

In particular, there is a graph for which the stopping time is Ω(n2) rounds both in

expectation and with high probability.

Proof. The proof is almost the same as in Theorem 2.4. The analysis will be done in

rounds instead of timeslots.

Using the fastest gossip variation – EXCHANGE, the probability p that a helpful

message will be sent in one timeslot over the edge (u, v) can be bounded (using a

union bound) as: p ≤ 1
∆(G′)+1

+ 1
∆(G′′)+1

.
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For the first case (∆ ≤ n/2) we obtain: p ≤ 2∆
∆·∆ = 2

∆
. For the second case

(∆ > n/2) we get:

p ≤ 1
∆

+ 1
n−∆

= n
∆(n−∆)

≤ n
∆(n−(1−ε)∆)

= 1
∆ε
. (2.42)

The first case can be viewed as the second with ε = 0.5; thus, we can further

analyze only the second case. The number of rounds, r, needed to to send n/2 helpful

messages over the edge (v, u), can be viewed as a sum of n/2 geometric random

variables with parameter p. Clearly, E [r] = n
2
· 1
p

= n∆(1−α)
4

= O(∆n) rounds. The

number of rounds, r, needed to to send n/2 helpful messages over the edge (u, v), can

be viewed as a sum of n/2 geometric random variables with parameter p. Clearly,

E [r] = n
2
· 1
p

= n∆ε
2

= O(∆n) rounds in both cases. Using Lemma 2.6 with k =

bE [r] /2c = bn∆ε/4c, p = 1
∆ε
· n∆ε/4
bn∆ε/4c ≥

1
∆ε

(we took p even larger than its maximum

value; this will make calculations nicer and will not affect the bound), and m = n/2

we get:

Pr (r > bn∆ε/4c) ≥ 1−

(
m

e
m−kp
m kp

)−m
= 1−

(√
e/2
)n/2

. (2.43)

The rest of the proof is the same as in Theorem 2.4.

The following corollary shows that our bounds (upper and lower) for algebraic

gossip on general graphs hold also for the PUSH and PULL gossip algorithms.

Corollary 2.3. The results of Theorems 2.1, 2.4, 2.6, and 2.7 hold also for PUSH and

PULL gossip algorithms.

Proof. By moving from the EXCHANGE to the PUSH or PULL gossip algorithms, we

change only the probability of sending a helpful message on a specific (directed) edge,

i.e., the service time at each node will change. Easy to see that this probability

will be decreased by a factor of 2 (i.e., the service time will become twice as long).

Clearly, such a reduction will not affect the asymptotic bounds that were achieved

using Lemmas 2.4, and 2.6.
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2.7 Proof of Theorem 2.3

In this section we present the full proof of the main theorem used for the upper bound

of the running time of algebraic gossip.

Theorem 2.3 (restated): Let Qtree
n be a network of n nodes arranged in a

tree topology, rooted at the node v. Each node has an infinite queue, and a single

exponential server with parameter µ. Initially, there is a single customer in every

queue. The time by which all n customers leave the network via the root node v is

t(Qtree
n ) = O(n/µ) with high probability. Formally, for any α > 1:

Pr
(
t(Qtree

n ) < α4n/µ
)
> 1− 2(2e−α/2)n. (2.44)

For the proof of this theorem we need the following auxiliary definitions, claims,

and lemmas.

Stochastic Dominance

Definition 2.3 (Stochastic dominance, stochastic ordering [37, 32]). We say that a

random variable X is stochastically less than or equal to a random variable Y if and

only if Pr(X ≤ t) ≥ Pr(Y ≤ t) for any t ≥ 0, and such a relation is denoted as:

X � Y .

Definition 2.4 (Stochastic equivalence). We say that a random variable X is stochas-

tically equivalent to a random variable Y if and only if Pr(X ≤ t) = Pr(Y ≤ t) for

any t ≥ 0, and such a relation is denoted as: X ≈ Y .

Claim 2.3. If for i ∈ {1, 2}, Xi � Yi, Xi are independent and Yi are independent,

then: maxiXi � maxi Yi.

Proof.

Pr(max
i
Xi ≤ t) =

⋂
i

Pr(Xi ≤ t) =
∏
i

Pr(Xi ≤ t) ≥
∏
i

Pr(Yi ≤ t) = Pr(max
i
Yi ≤ t).
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Hence, maxiXi � maxi Yi.

Claim 2.4. If for i ∈ {1, 2}, Xi � Yi, Xi are independent and Yi are independent,

then:
∑

iXi �
∑

i Yi.

Proof.

Pr(X1 +X2 ≤ t) =

∫ t

−∞
fX1+X2(s)ds,

where fX1+X2(s) = fX1(s) ∗ fX2(s).

Thus:

Pr(X1 +X2 ≤ t) =

∫ t

−∞

∫ ∞
−∞

fX1(τ)fX2(s− τ)dτds =

∫ ∞
−∞

fX1(τ) Pr(X2 ≤ t− τ)dτ

≥
∫ ∞
−∞

fX1(τ) Pr(Y2 ≤ t− τ)dτ =

∫ t

−∞

∫ ∞
−∞

fX1(τ)fY2(s− τ)dτds

=

∫ t

−∞

∫ ∞
−∞

fY2(τ)fX1(s− τ)dτds =

∫ ∞
−∞

fY2(τ) Pr(X1 ≤ t− τ)dτ

≥
∫ ∞
−∞

fY2(τ) Pr(Y1 ≤ t− τ)dτ =

∫ t

−∞

∫ ∞
−∞

fY2(τ)fY1(s− τ)dτds

= Pr(Y1 + Y2 ≤ t).

Hence,
∑2

i=1Xi �
∑2

i=1 Yi.

Later arrivals yield later departures

Consider an infinite FCFS queue with a single exponential server. We define ai as the

time of arrival number i to the queue, and di as time of departure number i from the

queue. Let Xi be the exponential random variable representing the service time of the

arrival i. For all i, Xi’s are i.i.d.

Let ai be a sequence of m arrival times to the queue, and di be a sequence of m

departure times from the queue (see Figure 2.5 for an illustration).
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µai di

X1 X2 X3 X4 X5

t

d1 d2 d3 d4 d5

a1 a2 a3 a4 a5

di = max(ai, di−1) +Xi

Figure 2.5: Arrival and departure times.

Lemma 2.10. If the sequence ai is replaced with another sequence of m arrivals – âi,

such that: âi � ai ∀i ∈ [1, ...,m], then the resulting sequence of m departures will be

such that: d̂i � di ∀i ∈ [1, ...,m]. I.e., if every new arrival occurred, stochastically, at

the same time or later than the old arrival, then every new departure from the queue

will occur, stochastically, at the same time or later than the old departure.

Proof. The proof is by induction on the arrival index j, j ∈ [1, ...,m].

• Induction basis: d̂1 � d1 follows since d1 = a1 +X1, d̂1 = â1 +X1, and â1 � a1.

• Induction assumption: ∀i < j : d̂i � di.

• Induction step: we need to show that d̂j � dj.

If the j’s arrival occurred when the server was busy, then dj = dj−1 +Xj. If the server

was idle when the j’s arrival occurred, then dj = aj +Xj. Thus, we can write:

dj = max(dj−1, aj) +Xj, (2.45)

and d̂j = max(d̂j−1, âj) +Xj. (2.46)

Since from induction assumption d̂j−1 � dj−1, and âj � aj, using Claims 2.3 and 2.4

we obtain d̂j � dj.
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Proof of Theorem 2.3. We denote the nodes of the queuing system Qtree
n as Z l

j, where

l (l ∈ [1, ..., lmax]) is the level of the node in the tree, and j is the node’s index in

level l. The root of the Qtree
n tree is the node Z1

1 . All servers in the Qtree
n network are

ON all the time (work-conserving scheduling), i.e., servers work whenever they have

customers to serve. There are no external arrivals to the system. Once a customer is

serviced on level l, it enters the appropriate queue at the level l−1. When a customer

is serviced by the root Z1
1 , it leaves the network.

Now, let us define the auxiliary queuing systems: Q̂tree
n and Qline

lmax
.

Definition 2.5 (Network of queues Q̂tree
n ). Q̂tree

n is the same network as Qtree
n with

the following change in the servers’ scheduling:

At any given moment, only one server at every level l (l ∈ [1, ..., lmax]) is ON.

Once a customer leaves level l, a server that will be scheduled (turned ON) at level l, is

the server that has in its queue a customer that has earliest arrival time to a queue at

level l among all the current customers at level l. If there are customers that initially

reside at level l, they will be serviced in the order of their IDs (we assume for analysis

that every customer has a unique identification number).

Definition 2.6 (Network of queues Qline
lmax

). Qline
lmax

is the following modification of the

network Qtree
n that results in a network of lmax queues arranged in a line topology.

For all l ∈ [1, .., lmax], we merge all the nodes at the level l to a single node (a

single queue with a single server). We name this single node at level l as the first

node in Qtree
n at level l, i.e., Z l

1. The customers that initially reside at level l will be

placed in a single queue in the order of their IDs. This modification results in Qline
lmax

–

a network of lmax queues arranged in a line topology: Z lmax
1 → Z lmax−1

1 → · · · → Z1
1 .

Definition 2.7 (Network of queues Q̀line
lmax

). Q̀line
lmax

– is the same system as Qline
lmax

with the following modification. We take the last customer at some node Zm
1 (m ∈

[1, .., lmax − 1]) and place it at the head of the queue of node Zm+1
1 . I.e., we move one

customer, one queue backward in the line of queues.
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Definition 2.8 (Network of queues Q̂line
lmax

). Q̂line
lmax

– is the same system as Qline
lmax

with

the following modification. We move all the customers to queue Z lmax
1 . I.e., all the

customers have to traverse now through all the lmax queues in the line.

We summarize the queuing systems defined above in short Table 2.1.

Qtree
n Original system of n queues arranged in a tree topology. Fig. 2.6 (a).

Q̂tree
n

System of n queues arranged in a tree topology. Only one server is active

at each level at a given time. Fig. 2.6 (b).

Qline
lmax System of lmax queues arranged in a line topology. Fig. 2.6 (c).

Q̀line
lmax

System of lmax queues arranged in a line topology. One customer is moved

one queue backward.

Q̂line
lmax

System of lmax queues arranged in a line topology. All customers are

moved backward to the queue Z lmax
1 .

Table 2.1: Queuing systems used in the proof.

The proof of Theorem 2.3 consists of showing the following relations between

the stopping times of the queuing systems:

t(Qtree
n ) � t(Q̂tree

n ) ≈ t(Qline
lmax

) � t(Q̀line
lmax

) � t(Q̂line
lmax

) = O(n/µ). (2.47)

Stopping time of a queuing system t(Q) is the time at which the last customer

leaves the system (via the node Z1
1). In order to compare the stopping times of queuing

systems, we define the following ordered set (or sequence) of departure time from a

server Z in a queuing system Q: d(Z,Q) = (d1(Z,Q), d2(Z,Q), ..., di(Z,Q), ...), where

di(Z,Q) is the time of the departure number i from the node (server) Z.

First, we want to show that the stopping time of Qtree
n is at most the stopping

time of the system Q̂tree
n , i.e., t(Qtree

n ) � t(Q̂tree
n ).
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Figure 2.6: (a) Network Qtree
n , where all the servers work all the time. (b) Network

Q̂tree
n , where only one server at each level works at a given time. (c) Network Qline

lmax
.

Lemma 2.11. In Q̂tree
n , every departure from the system (via Z1

1 ) will occur, stochas-

tically, at the same time or later than in Qtree
n :

di(Z
1
1 , Q̂

tree
n ) � di(Z

1
1 , Q

tree
n ) ∀i ∈ [1, ..., n]. (2.48)

Thus, in Q̂tree
n , the last customer will leave the system, stochastically, at the same time

or later than in Qtree
n or: t(Qtree

n ) � t(Q̂tree
n ).

Proof. The proof is by induction on the tree level l, l ∈ [1, ..., lmax].

• Induction basis: ∀i, j : di(Z
lmax
j , Q̂tree

n ) � di(Z
lmax
j , Qtree

n ). This is true since in

Q̂tree
n , the nodes do not work all the time, and thus the departures will occur,
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stochastically, at the same time or later than in Qtree
n . If there is a single node at

level lmax, in Q̂tree
n it will be ON all the time as in Qtree

n , and thus, the departures

will occur, stochastically, at the same time in both systems.

• Induction assumption: for all l > m (m ≥ 1), ∀i, j : di(Z
l
j, Q̂

tree
n ) � di(Z

l
j, Q

tree
n ).

• Induction step: we need to show that: ∀i, j : di(Z
m
j , Q̂

tree
n ) � di(Z

m
j , Q

tree
n ).

By induction assumption, for l = m + 1: ∀i, j : di(Z
m+1
j , Q̂tree

n ) � di(Z
m+1
j , Qtree

n ).

Now let us take a look at the departures from a node Zm
j . There are two cases: Zm

j

is a leaf, and Zm
j is not a leaf. If Zm

j is a leaf, we can use the same argument as in

the induction basis: in Q̂tree
n , the node Zm

j does not work all the time, and thus the

departures from it in Q̂tree
n cannot occur earlier than in Qtree

n . If Zm
j is not a leaf, it has

input/inputs of arrivals from the level m+ 1. Since the arrivals from the level m+ 1

in Q̂tree
n occur, stochastically, at the same time or later than in Qtree

n (by induction

assumption), even if node Zm
j would work all the time (as in Qtree

n ), we would obtain

from Lemma 2.10: ∀i, j : di(Z
m
j , Q̂

tree
n ) � di(Z

m
j , Q

tree
n ). Moreover, in Q̂tree

n , node Zm
j

does not work all the time (unless it is the only node at level m); thus the departure

times in Q̂tree
n can be even larger.

Lemma 2.12. In Qline
lmax

, every departure from the system (via Z1
1 ) will occur, stochas-

tically, at the same time as in Q̂tree
n . Thus, in Qline

lmax
, the last customer will leave the

system, stochastically, at the same time as in Q̂tree
n .

Proof. Consider the two following facts regarding the network Q̂tree
n . First, a customer

entering level l will be serviced after all the customers that arrived at level l before

it, are serviced. Second, at any given moment, only one customer is being serviced at

level l (if there is at least one customer at the nodes Z l
j). These facts are true due to

the scheduling of the servers in Q̂tree
n (Definition 2.5).

Clearly, the same facts are true for the network Qline
lmax

. First, any customer

entering level l will be serviced after all the customers that arrived at level l before

53



it are serviced. Second, at any given moment, only one customer is being serviced

at level l (if there is at least one customer in node Z l
1). These facts are true since in

Qline
lmax

, at every level, there is a single queue with a single server (Definition 2.6).

So, the departure times of every customer from every level l (l ∈ [1, ..., lmax])

are, stochastically, the same in both systems. The departures from level l = 1 are the

departures from the node Z1
1 , and thus the lemma holds.

Now we are going to move one customer one queue backward, and will show that

the resulting system will have stochastically larger (or the same) stopping time.

Lemma 2.13. Consider a network Qline
lmax

. Let m be a level index: m ∈ [1, .., lmax − 1].

We take the last customer at node Zm
1 and place it at the head of the queue of node

Zm+1
1 , and call the resulting network – Q̀line

lmax
(Fig. 2.7 (b)). Then:

di(Z
1
1 , Q

line
lmax

) � di(Z
1
1 , Q̀

line
lmax

) ∀i ∈ [1, ..., n]. (2.49)

Thus, in Q̀line
lmax

, the last customer will leave the system, stochastically, at the same time

or later than in Qline
lmax

, or: t(Qline
lmax

) � t(Q̀line
lmax

).

Proof. We call the customer that was moved – customer c. Let us take a look at the

times of arrivals to node Zm
1 in Qline

lmax
and in Q̀line

lmax
. Since customer c is already located

in the queue of Zm
1 in Qline

lmax
, its arrival time can be considered as 0. In Q̀line

lmax
, the arrival

time of c is at least 0 (it should be serviced at Zm+1
1 before arriving at Zm

1 ). Each of the

rest of the customers that should arrive at Zm
1 will arrive in Q̀line

lmax
, stochastically, at the

same time or later than in Qline
lmax

, since in Q̀line
lmax

the server Zm+1
1 should first service the

customer c, and only then start servicing the rest customers. Thus, di(Z
m+1
1 , Q̀line

lmax
) �

di(Z
m+1
1 , Qline

lmax
). Using Lemma 2.10 we obtain that: di(Z

m
1 , Q̀

line
lmax

) � di(Z
m
1 , Q

line
lmax

).

Iteratively applying Lemma 2.10 to the nodes Z l
1, l ∈ [m − 1, ..., 1], we obtain the

result: di(Z
1
1 , Q̀

line
lmax

) � di(Z
1
1 , Q

line
lmax

).
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Figure 2.7: (a) Network Qline
lmax

. (b) Network Q̀line
n , where one customer is moved one

queue backward. (c) Network Q̂line
lmax

, where all the customers are at the last queue.

Corollary 2.4. Consider a network Q̂line
lmax

(Definition 2.8) that is identical to the

network Qline
lmax

with the following change. In Q̂line
lmax

, all n customers are located at the

node Z lmax
1 (Fig. 2.7 (c)). Then:

di(Z
1
1 , Q

line
lmax

) � di(Z
1
1 , Q̂

line
lmax

) ∀i ∈ [1, ..., n]. (2.50)

Thus, in Q̂line
lmax

, the last customer will leave the system, stochastically, at the same time

or later than in Qline
lmax

, or: t(Qline
lmax

) � t(Q̂line
lmax

).

Proof. Given the network Qline
lmax

, we take one customer from the tail of some queue

(except the queue of node Z lmax
1 ) and place it at the head of the queue of the preceding

node in the Qline
lmax

. According to Lemma 2.13, we get a network in which every customer

leaves via Z1
1 , stochastically, not earlier than in Qline

lmax
. Iteratively moving customers

(one customer and one queue at a time) backwards we finally get the network Q̂line
lmax

in which all n customers are located at node Z lmax
1 . Since at each step, according to

Lemma 2.13, the departure times from Z1
1 could only get, stochastically, larger, the

lemma holds.
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Corollary 2.5. The time it will take the last customer to leave the network of n

queues arranged in a tree topology is, stochastically, the same or smaller than in the

network of n queues arranged in a line topology where all n customers are located at

the farthest queue, i.e., t(Qtree
n ) � t(Q̂line

lmax
).

Proof. This result directly follows from Lemmas 2.11, 2.12, and the Corollary 2.4.

Now we are ready for the last step of the proof. We find the stopping time of a

system of queues arranged in a line, with all the customers located at the last queue.

Lemma 2.14. The time it will take for the last customer to leave system Q̂line
lmax

(lmax

queues arranged in a line) is O(n/µ) with high probability. Formally, for any α > 1:

Pr
(
t(Q̂line

lmax
) < α4n/µ

)
> 1− 2(2e−α/2)n. (2.51)

Proof. Initially, all the customers (from now we will call them real customers) are

located in the last (Z lmax
1 ) queue. We now take all the real customers out of this

queue and will make them enter the system (via Z lmax
1 ) from outside. We define the

real customers’ arrivals as a Poisson process with rate λ = µ
2
. So, ρ = λ

µ
= 1

2
< 1

for all the queues in the system. Clearly, such an assumption only increases the

stopping time of the system (stopping time is the time until the last customer leaves

the system). According to Jackson’s theorem, whose proof can be found in [20], there

exists an equilibrium state. So, we need to ensure that the lengths of all queues

at time t = 0 are according to the equilibrium state probability distribution. We

add dummy customers to all the queues according to the stationary distribution. By

adding additional dummy customers to the system, we make the real customers wait

longer in the queues, thus increasing the stopping time.

We will compute the stopping time t(Q̂line
lmax

) in two phases: Let us denote this

time as t1 + t2, where t1 is the time needed for the n’th customer to arrive at the

first queue, and t2 is the time needed for the n’th customer to pass through all the

lmax queues in the system. From Jackson’s Theorem, it follows that the number of
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customers in each queue is independent, which implies that the random variables that

represent the waiting times in each queue are independent.

The random variable t1 is the sum of n independent random variables distributed

exponentially with parameter µ
2
. From Lem. 2.3 we obtain that t2 is the sum of lmax

independent random variables distributed exponentially with parameter µ − λ = µ
2
.

Since lmax ≤ n, we can assume the worst case (for the upper bound of stopping

time) lmax = n. Thus, we can view t2 as the sum of n independent random variables

distributed exponentially with parameter µ
2
. E [t1] =

∑n
i=1

2
µ

= 2n
µ

, so, using Lem. 2.4:

Pr (t1 < αE [t1]) > 1− (2e−α/2)n, (2.52)

Pr (t1 < α2n/µ) > 1− (2e−α/2)n. (2.53)

In a similar way we obtain: Pr (t2 < α2n/µ) > 1− (2e−α/2)n. Since t(Q̂line
lmax

) = t1 + t2,

using union bound, we obtain:

Pr (t1 + t2 < α4n/µ) > 1− 2(2e−α/2)n. (2.54)

So, for a constant α, t(Q̂line
lmax

) = O(n/µ), w.p. of at least 1− 2(2e−α/2)n.

From Corollary 2.5 we have that t(Qtree
n ) � t(Q̂line

lmax
) and thus: t(Qtree

n ) < α4n/µ

w.p. of at least 1−2(2e−α/2)n for any α > 1, so the proof of Theorem 2.3 is completed.

2.8 Conclusions

In this chapter we prove bounds on the stopping time of the algebraic gossip protocol.

We prove that the upper bound for any graph is O(n2) and we show that this bound

is tight in a sense that there exists a graph for which the stopping time of algebraic

gossip is Ω(n2). Our general upper bound O(∆n) is provided as a function of the

maximum degree ∆ of a graph and thus we can obtain a tight linear bound of Θ(n)
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for any graph with a constant maximum degree. Moreover, our results hold for q ≥ 2

(coefficients field size), while previous results were for the case q ≥ n.

In [8], we originally asked the following question. What are the properties of a

network (beyond the maximum degree ∆) that capture the stopping time of algebraic

gossip? To illustrate that the maximum degree is not always the correct metric, note

the interesting observation that on the extended-barbell graph (Fig. 2.8) the stopping

time of algebraic gossip is linear. So, by adding a single node to the barbell graph

(Fig. 2.4 (b)) the stopping time has been changed by an order of magnitude?! A recent

paper by Haeupler [33] makes a significant progress in answering our open question.

In Section 3.1.2, we briefly describe this very interesting work and compare it to our

results.

u v

Figure 2.8: Extended barbell graph: additional node between the cliques.

In the next chapter (which describes our most recent work on algebraic gossip),

we successfully address the topics of many-to-all communication and the non-uniform

gossip approach. These topics were originally raised in the conference version [8] of

the current work. We first provide an upper bound for the many-to-all scenario and

show that the bound is tight for various topologies (in particular, for graphs with

a constant maximum degree); second, we study a non-uniform gossip and propose a

modified algebraic gossip algorithm that is order optimal for many families of graphs.
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Chapter 3

Algebraic Gossip – k-Dissemination

3.1 Introduction

One of the most basic information spreading applications is that of disseminating

information stored at a subset of source nodes to a set of sink nodes. Here we consider

the k-dissemination case: k initial messages (k ≤ n) located at some nodes (a node

can hold more than one initial message) need to reach all n nodes. The all-to-all

communication – each of n nodes has an initial value that is needed to be disseminated

to all nodes – is a special case of k-dissemination. The goal is to perform this task in

the lowest possible number of time steps when messages have limited size (i.e., a node

may not be able to send all its data in one message).

Gossiping, or rumor-spreading, is a simple stochastic process for dissemination of

information across a network. In a synchronous round of gossip, each node chooses a

single neighbor as the communication partner and takes an action. In an asynchronous

time model, at every timeslot, a single node wakes up and chooses a communication

partner. Every n consecutive timeslots are considered as one round. The gossip com-

munication model defines how to select this neighbor, e.g., uniform gossip is when the

communication partner is selected uniformly at random from the set of all neighbors.

We then consider three possible actions: either the node pushes information to the

partner (PUSH), pulls information from the partner (PULL), or does both (EXCHANGE),
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but here we mostly present results about EXCHANGE.

A gossip protocol uses a gossip communication model in conjunction with the

choice of the particular content that is exchanged. Due to their distributed nature,

gossip protocols have gained popularity in recent years and have found applications

both in communication networks (for example, updating database replicated at many

sites [24, 39], computation of aggregate information [40] and multicast via network

coding [22], to name a few) as well as in social networks [41, 17].

In this chapter we continue to analyze algebraic gossip which is a type of network

coding known as random linear coding (RLNC) [45, 43] that uses gossip algorithms

for all-to-all communication and k-dissemination. In algebraic gossip the content of

messages is the random linear combination of all messages stored at a sender. Once

a node has received enough independent messages (independent linear equations) it

can solve the system of linear equations and discover all the initial values of all other

nodes. It has been proved in [22] that using algebraic gossip can speedup message dis-

semination by an order of magnitude, compared to the uncoded dissemination scheme

– “random message selection”. In [36], authors showed that network coding can im-

prove the throughput of the network by better sharing of the network resources. Note,

however, that in gossip protocols, nodes select a single partner, so for k-dissemination

to succeed each node needs to receive at least k messages (of bounded size), hence at

least a total of kn messages need to be sent and received. This immediately leads to

a trivial lower bound of Ω(k) rounds for k-dissemination.

We study uniform and non-uniform algebraic gossip both in the synchronous and

the asynchronous time models on arbitrary graph topologies. The stopping time obvi-

ously depends on the protocol, the gossip communication model, the graph topology,

but also on the time model, as shown in other cases [31].
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3.1.1 Overview of Results of the Current Chapter

Our first set of results is about the stopping time of uniform algebraic gossip. In

Chapter 2 we have shown a tight bound of Θ(n) for all-to-all communication for

graphs with constant maximum degree. To prove this, we used a reduction of gossip

to a network of queues and analyzed the waiting times in the queues. Bounding the

general k-dissemination case is significantly harder, despite some similarity in the tools

used. Unless explicitly stated, all our results are for gossip using EXCHANGE and are

with high probability1.

We provide a novel upper bound for uniform algebraic gossip of O((k + log n +

D)∆) where D is the diameter and ∆ is the maximum degree in the graph. For graphs

with constant maximum degree (∆ = O(1)) this leads to a bound of O(k + D). In

this case, we also show a matching lower bound of Ω(k + D) which makes uniform

algebraic gossip an order optimal gossip protocol for these graphs.

However, there are topologies for which uniform algebraic gossip performs badly,

e.g., in the barbell graph (two cliques connected with a single edge) it takes Ω(n2)

rounds to perform all-to-all communication (as we have shown in Chapter 2, Theorem

2.4). This is usually the result of bottlenecks that exist in the graph and lead to

low conductance. For such ”bad” topologies we propose here a modification of the

uniform algebraic gossip called Tree based Algebraic Gossip (TAG). The basic idea

of the protocol is that it operates in two phases: first, using a gossip protocol S it

generates a spanning tree in which each node in the tree has a single parent. In the

next phase, algebraic gossip is performed on the tree where each node does EXCHANGE

with its parent. Let t(S) and d(S) be the stopping time of S and the diameter of the

tree generated by S, respectively. For any spanning tree gossip protocol S we prove

for TAG an upper bound of: O(k + log n+ d(S) + t(S)) for the synchronous and the

asynchronous time models. As a special case of a spanning tree protocol, one can use a

1An event occurs with high probability (w.h.p. ) if its probability is at least 1−O( 1
n ).
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Protocol Graph Synchronous Asynchronous

Uniform AG
any graph O((k + log n+D)∆)

constant max degree Θ(k + D)

TAG

any graph
O(k + log n+ d(S) + t(S))

O(k + log n+ t(B)) O(k + log n+ d(B) + t(B))

k = Θ(n), any graph Θ(n)

Table 3.1: Overview of the main results of Chapter 3. Bold text and Θ indicate order

optimal result. D – diameter of the graph, ∆ – maximum degree of the graph, S –

spanning tree protocol, B – broadcast (or 1-dissemination) protocol, d(·) – diameter

of the spanning tree generated by protocol (·), t(·) – stopping time of protocol (·).

gossip broadcast (or 1-dissemination) protocol B – a protocol in which a single message

originated at some node should be disseminated to all nodes. Interestingly, using a

gossip broadcast for the spanning tree construction in TAG, eliminates the dependence

on the diameter of the spanning tree in the synchronous time model, i.e., if we use B

as S, we obtain the bound of O(k+ log n+ t(B)) rounds. For a general spanning tree

protocol S, it follows directly that if k = Ω(max(log n, d(S), t(S))), TAG is an order

optimal with a stopping time of Θ(k). We provide an example of this scenario which

leads to the most significant result of the chapter. Using a simple round-robin-based

broadcast we show that TAG is an order optimal gossip protocol for k-dissemination

in any topology when k = Ω(n). This implies, somewhat surprisingly, that for any

graph, if k = Θ(n), TAG finishes in Θ(n) rounds. In the barbell graph mentioned

above, TAG leads to a speedup ratio of n compared to the uniform algebraic gossip.

Table 3.1 summarizes our main results of the chapter and next, we discuss previous

results.
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3.1.2 Related Work

Uniform algebraic gossip was first proposed by Deb et al. in [22]. The authors studied

uniform algebraic gossip using PULL and PUSH on the complete graph and showed a

tight bound of Θ(k), for the case of k = ω(log3(n)) messages. Boyd et al. [10, 12]

studied the stopping time of a gossip protocol for the averaging problem using the

EXCHANGE algorithm. They gave a bound for symmetric networks that is based on the

second largest eigenvalue of the transition matrix or, equally, the mixing time of a

random walk on the network, and showed that the mixing time captures the behavior

of the protocol. Mosk-Aoyama and Shah [47] used a similar approach to [10, 12]

to first analyze algebraic gossip on arbitrary networks. They consider symmetric

stochastic matrices that (may) lead to a non-uniform gossip and gave an upper bound

for the PULL algorithm that is based on a measure of conductance of the network.

As the authors mentioned, the offered bound is not tight, which indicates that their

conductance-based measure does not capture the full behavior of the protocol.

In [8], we used queuing theory as a novel approach for analyzing algebraic gossip.

We then gave an upper bound of O(n∆) rounds for any graph for the case of all-to-all

communication, where ∆ is the maximum degree in the graph. In addition, a lower

bound of Ω(n2) was obtained for the barbell graph – the worst case graph for algebraic

gossip. The bounds (upper and lower) in [8] were tight in the sense that they matched

each other for the worst case scenario. The parameter ∆ is simple and convenient

to use, but, it does not fully capture the behavior of algebraic gossip. While it gives

optimal (Θ(n)) result for any constant-degree graphs (e.g., line, grid), it fails to reflect

the stopping time of algebraic gossip on the complete graph, for example, by giving

the O(n2) bound instead of O(n).

A recent work of Haeupler [33] is the most related to our work. Haeupler’s pa-

per makes a significant progress in analyzing the stopping time of algebraic gossip.

While all previous works on algebraic gossip used the notion of helpful message/node
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to look at the rank evaluation of the matrices each node maintains (this approach was

initially proposed by [22]), Haeupler used a completely different approach. Instead

of looking on the growth of the node’s subspace (spanned by the linear equations it

has), he proposed to look at the orthogonal complement of the subspace and then

analyze the process of its disappearing. This elegant and powerful approach led to

very impressive results which apply also to adversarial dynamic networks and arbi-

trary edge probabilities. For the all-to-all communication scenario, a tight bound of

Θ(n
γ
) was proposed, where γ is a min-cut measure of a related graph. This bound

perfectly captures algebraic gossip behavior for any network topology. For the case of

k-dissemination, the author gives a conjecture that the upper bound is of the form of

O(k + T ) where T is the time to disseminate a single message to all the nodes. But

formally, the bound that is proved is O(k/γ+log2 n/λ) where λ is a conductance-based

measure of the graph (Lemma 7.6 in [33]). The work in [33] implicitly considered the

uniform algebraic gossip, but could be extended to non-uniform cases. It is therefore

hard to compare TAG to the results of [33], nevertheless, our bounds for the uniform

algebraic gossip are better for certain families of graphs. Table 3.2 presents few such

examples.

Graph O(k/γ + log2 n/λ)/n [33] O((k + log n+D)∆) [here]
Improvement

factor

Line O(k + n log2 n) O(k + n) log2 n

Grid O(k +
√
n log2 n) O(k +

√
n)

log2 n

for k = O(
√
n)

Binary Tree O(k + n log2 n) O(k + log n) Ω(n logn
k )

Table 3.2: Comparison of our results with [33].

We would like to note that Haeupler [34] recently extended the results of [33]
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using the same techniques above to provide additional tighter bounds similar to the

results we present here.

To give a quick summary of our results and previous work, the two main contri-

butions of the chapter are i) we prove that for graphs with constant maximum degree

uniform algebraic gossip is order optimal for k-dissemination in the synchronous time

model and ii) we offer a new non-uniform algebraic gossip protocol, TAG, that is or-

der optimal for large selections of graphs and k. The rest of the chapter is organized

as follows: in Section 3.2 we give definitions. Section 3.3 proves results for uniform

algebraic gossip and Section 3.4 presents the TAG protocol and its general bound.

Section 3.4.2, then, discussses a case where TAG is optimal.

3.2 Preliminaries

As in Chapter 2, we model the communication network by a connected undirected

graph Gn = Gn(V,E), where V is the set of vertices and E is the set of edges. The

number of vertices in the graph is |V | = n. Let N(v) ⊆ V be a set of neighbors of

node v and dv = |N(v)| its degree, let ∆ = maxv dv be the maximum degree of Gn,

and let D be the diameter of the graph.

We consider two time models: asynchronous and synchronous. In the asyn-

chronous time model at every timeslot, one node selected independently and uni-

formly at random, takes an action and a single pair of nodes communicates. We

consider n consecutive timeslots as one round. In the synchronous time model at ev-

ery round, every node takes an action and selects a single communication partner.

It is assumed that the information received in the current round will be available to

a node for sending only from the beginning of the next round. A Gossip commu-

nication model (sometimes called gossip algorithm) defines the way information is

spread in the network. In the gossip communication model, a node that wakes up (ac-
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cording to the time model) can initiate communication only with a single neighbor2

(i.e., communication partner). The model describes how the communication partner

is chosen and in which direction (to – PUSH, from –PULL, or both – EXCHANGE) the

message is sent. In this chapter we use the following communication models:

Definition 3.1 (Uniform Gossip). Uniform gossip is a gossip in which a communi-

cation partner is chosen randomly and uniformly among all the neighbors.

Definition 3.2 (Round-Robin (RR) Gossip). In round-robin gossip, the communi-

cation partner is chosen according to a fixed, cyclic list, of the nodes’ neighbors. This

list dictates the order in which neighbors are being contacted.

Notice that if the initial partner is chosen at random, the round-robin gossip

communication model is known as the quasirandom rumor spreading model [1, 25].

3.2.1 Gossip Protocols

Gossip protocols define the task and the message content. In turn, a gossip protocol

can use any of the gossip communication models defined above (and others). We

will use two types of gossip protocols here: Algebraic Gossip and Spanning Tree

Gossip protocols.

In this chapter, we define algebraic gossip as a k-dissemination protocol, i.e., its

task is to deliver all the k messages, initially located at arbitrary nodes, to every node

in the network. In algebraic gossip, every message is sent by a node according to the

random linear coding (RLNC) technique which is described in Section 2.2.3. Here, we

just remind the following definition which is necessary for understanding the concept

of helpfulness in the analysis of algebraic gossip.

2Note that this implies that in the synchronous model a node can communicate with more than

a single neighbor, if other nodes initiate communication with it.
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Definition 3.3 (Helpful node ([22]) and helpful message). We say that a node x is

a helpful node to a node y if and only if a random linear combination constructed

by x can be linearly independent with all equations (messages) stored in y. We call a

message a helpful message if it increases the dimension (or rank) of the node (i.e.,

the rank of the matrix in which the node stores the messages).

A spanning tree gossip protocol, which we denote by S, will create a spanning

tree of a given graph, i.e., by its completion, every node, except the root, will have a

single neighbor called the parent. Note that one simple way to generate a spanning tree

is by using a 1-dissemination protocol, namely a broadcast protocol initiated by an

arbitrary node that will disseminate its message (or ID) to every other node. Spanning

tree gossip protocol will be used as an auxiliary protocol for the k-dissemination task

along with the algebraic gossip (the resulting combined protocol we call TAG and

formally describe it in Section 3.4). The list of notations, used throughout the chapter,

can be found in Table 3.3.

3.3 k-dissemination with Uniform Algebraic Gos-

sip

The main result of this section is that uniform algebraic gossip is order optimal k-

dissemination for graphs with constant maximum degree and for any selection of k.

It is formally stated in Theorem 3.3 and is an almost direct result of the following

general bound for uniform algebraic gossip:

Theorem 3.1. For any connected graph Gn, the stopping time of the uniform algebraic

gossip protocol with k messages is O((k + log n + D)∆) rounds for synchronous and

asynchronous time models w.h.p.
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n Number of nodes

k Number of messages needed to be disseminated

Gn Connected graph with n nodes

Tn Connected Tree graph with n nodes

lmax Depth of the tree created by a broadcast protocol

Qtree
n Network of n queues arranged in a tree topology

Qline
lmax

Network of lmax queues arranged in a line topology

D Diameter of a graph

N(v) Set of neighbors of the node v

dv Degree of the node v (dv = |N(v)|)

∆ Maximum degree of the graph (∆ = maxv dv)

timeslot Unit of time in the asynchronous time model

round Unit of time in the synchronous time model (1 round = n timeslots)

S Some spanning tree gossip protocol

B Some broadcast (1-dissemination) gossip protocol

d(S), d(B) Diameter of the spanning tree created by the protocol

RR Round-robin communication model

BRR Broadcast gossip protocol based on the round-robin communication model

TAG k-dissemination protocol that uses algebraic gossip and a spanning tree

protocol

t(·) Stopping time of protocol (·)

t(Qtree
n ) Stopping time of a queuing system – time by which all customers leave the

system

Table 3.3: Notations used in the chapter.

The idea of the proof relies on the queuing networks technique we presented in

Chapter 2. The major steps of the proof are:

• Consider a Breadth First Search (BFS) tree of Gn, Tn rooted at an arbitrary

node v. The maximum depth (lmax) of the tree is at most D (diameter of Gn).
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• Reduce the problem of algebraic gossip on a tree Tn to a simple system of queues

Qtree
n rooted at v, where at each node we assume an infinite queue with a single

server. Every initial message becomes a customer in the queuing system. The

root v finishes once all the customers arrive at it.

• Show that the stopping time of the tree topology queuing system – Qtree
n , is

O((k+ log n+ lmax)n∆) timeslots w.h.p. So, we obtain the stopping time for the

node v.

• Use union bound to obtain the result for all the nodes in Gn.

Just before we start the formal proof of Theorem 3.1, we present an interesting

theorem related to queuing theory. The theorem gives the stopping time of the feed-

forward queuing system [20] arranged in a tree topology. In the feedforward network,

a customer can not enter the same queue more than once , thus, customers are always

forwarded towards the root and eventually leave the system via the queue at the root of

the tree. Consider the following scenario: n identical M/M/1 queues (M/M/1 system

is a queue with a single server in which interarrival and service times are distributed

exponentially) arranged in a tree topology. There are no external arrivals, and there

are k customers arbitrarily distributed in the system. We ask the following question:

how much time will it take for the last customer to leave the system?

Theorem 3.2. Let Qtree
n be a network of n nodes arranged in a tree topology, rooted at

the node v. The depth of the tree is lmax. Each node has an infinite queue, and a single

exponential server with parameter µ. The total amount of customers in the system is k

and they are initially distributed arbitrarily in the network. The time by which all the

customers leave the network via the root node v is t(Qtree
n ) = O((k + lmax + log n)/µ)

timeslots with probability of at least 1− 2
n2 .

Proof. The main idea of the proof is to show that the stopping time of the network

Qtree
n (i.e., the time by which all the customers leave the network) is stochastically
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smaller or equal (see Definition 2.3 below) to the stopping time of the systems of

lmax queues arranged in a line topology – Qline
lmax

. Then, we make the system Qline
lmax

stochastically slower by moving all the customers out of the system and make them

enter back via the farthest queue with the rate λ = µ/2. Finally, we use Jackson’s

Theorem for open networks to find the stopping time of the system. See Fig. 2.3 for

the illustration. The formal proof of the theorem is analogous to the proof of Theorem

2.3 with the only change that the total number of customers is k ≤ n instead of n.

So, following the proof of Theorem 2.3 we can conclude that:

t(Qtree
n ) � t(Q̂tree

n ) ≈ t(Qline
lmax

) � t(Q̀line
lmax

) � t(Q̂line
lmax

). (3.1)

Now, it is left to show that t(Q̂line
lmax

) = O((k + lmax + log n)/µ) with high proba-

bility.

Lemma 3.1. The time it will take to the last customer to leave the system Q̂line
lmax

(lmax

M/M/1 queues arranged in a line topology) is O((k+ log n+ lmax)/µ) with probability

of at least 1− 1
n2 .

Proof. Initially, all the customers (from now we will call them real customers) are

located in the last (Z lmax
1 ) queue. We now take all the real customers out of this queue

and will make them enter the system (via the Z lmax
1 ) from outside. We define the real

customers’ arrivals as a Poisson process with rate λ = µ
2
. So, ρ = λ

µ
= 1

2
< 1 for all the

queues in the system. Clearly, such an assumption only increases the stopping time

of the system (stopping time is the time until the last customer leaves the system).

According to Jackson’s theorem (Section 2.3), there exists an equilibrium state.

So, we need to ensure that the lengths of all queues at time t = 0 are according to the

equilibrium state probability distribution. We add dummy customers to all the queues

according to the stationary distribution. By adding additional dummy customers to

the system, we make the real customers wait longer in the queues, thus increasing the

stopping time.
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We will compute the stopping time t(Q̂line
lmax

) in two phases: Let us denote this

time as t1 + t2, where t1 is the time needed for the k’th customer to arrive at the first

queue, and t2 is the time needed for the k’th customer to pass through all the lmax

queues in the system.

From Jackson’s theorem, it follows that the number of customers in each queue

is independent, which implies that the random variables that represent the waiting

times in each queue are independent.

The random variable t1 is the sum of k independent random variables distributed

exponentially with parameter µ/2. From Lemma 2.3 we obtain that t2 is the sum of

lmax independent random variables distributed exponentially with parameter µ− λ =

µ/2. E [t1] =
∑k

i=1 2/µ = 2k/µ, and by taking α = 2 + 4 lnn
k

, we obtain:

Pr (t1 < (4k + 8 lnn)/µ) > 1− (2e−(2+4
lnn
k

)/2)k (3.2)

= 1− (2
e
)ke−2 lnn (3.3)

≥ 1− e−2 lnn (3.4)

≥ 1− 1
n2 . (3.5)

In a similar way we obtain:

Pr (t2 < (4lmax + 8 lnn)/µ) > 1− 1
n2 . (3.6)

t(Q̂line
lmax

) = t1 + t2, thus, using union bound:

Pr (t1 + t2 < (4k + 4lmax + 16 lnn)/µ) > 1− 2
n2 (3.7)

and thus:

t(Q̂line
lmax

) = O((k + lmax + log n)/µ) (3.8)

w.p. of at least 1− 2
n2 .
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We now complete the proof of Theorem 3.2. Since t(Qtree
n ) � t(Q̂line

lmax
) and thus,

using Lemma 3.1: t(Qtree
n ) = O((k + lmax + log n)/µ) w.p. of at least 1− 2

n2 .

We can now prove Theorem 3.1.

Proof of Theorem 3.1. We start the analysis of the uniform algebraic gossip with k

messages and the asynchronous time model. First, we consider a Breadth First Search

(BFS) spanning tree Tn of Gn rooted at an arbitrary node v. The depth of Tn is lmax,

and since Tn is the shortest path tree, lmax ≤ D, where D is the diameter of the graph.

On the tree Tn, consider a message flow towards the root v from all other nodes. Once

k helpful messages arrive at v, it will reach rank k and finish the algebraic gossip

protocol. We ignore messages that are not sent in the direction of v. Ignoring part of

messages can only increase the stopping time of the algebraic gossip protocol.

We define a queuing system Qtree
n by assuming an infinite queue with a single

server at each node. The root of Qtree
n is the node v. Customers of our queuing network

are helpful messages, i.e., messages that increase the rank of a node they arrive at.

This means that every customer arriving at some node increases its rank by 1. When

a customer leaves a node, it arrives at the parent node. The queue length of a node

represents a measure of helpfulness of the node to its parent, i.e., the number of helpful

messages it can generate for it.

The service procedure at a node is a transmission of a helpful message towards

the node v (from a node to its parent). Lemma 2.1 in [22] gives a lower bound for the

probability of a message sent by a helpful node to be a helpful message, which is: 1− 1
q
,

where q is a size of a finite field Fq from which the random network coding coefficients

are drawn. In the uniform gossip communication model, the communication partner

of a node is chosen randomly among all the node’s neighbors in the original graph

Gn. The degree of each node in Gn is at most ∆. Thus, in the asynchronous time

model, in a given timeslot, a helpful message will be sent over the edge in a specific
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direction with probability of at least (1 − 1
q
)/n∆, where 1

n
is the probability that a

given node wakes up in a given timeslot, 1
∆

is the minimal probability that a specific

partner (the parent of the node) will be chosen, and 1− 1
q

is the minimal probability

that the message will be helpful. Thus, we can consider that the service time in our

queuing system is geometrically distributed with parameter p ≥ (1− 1
q
)/n∆, and since

q ≥ 2, we can assume the worst case: p = 1
2n∆

.

Lemma 2.2 shows that we can model the service time of each server as an expo-

nential random variable with parameter µ = p, since in this case, exponential servers

are stochastically slower than geometric. Such an assumption can only increase the

stopping time.

Theorem 3.2 with µ = p gives us an upper bound for the stopping time of the

node v, tv = O((k + lmax + log n)2n∆) timeslots with probability of at least 1 − 2
n2 .

Since the depth of every BFS tree is bounded by the diameter D, using a union bound

we obtain the upper bound (in timeslots) for all the nodes in Gn:

Pr

(⋂
v∈V

tv = O((k + log n+D)2n∆)

)
> 1− 2

n
. (3.9)

Thus we obtain the upper bound for uniform algebraic gossip: O((k+log n+D)∆)

rounds. Next, we show that this bound holds also for the synchronous time model.

The proof for the synchronous time model is almost the same as in the asynchronous

case, except for the following change. Instead of dividing time into timeslots, we

measure it by rounds (1 round = n timeslots). In a given round, a helpful message

will be sent over the edge in a specific direction with probability p ≥ (1− 1
q
)/∆, where

the 1
∆

is the minimal probability that a specific partner (the parent of the node) will

be chosen, and 1− 1
q

is the minimal probability that the message will be helpful. Since

q ≥ 2, we can assume the worst case: p = 1
2∆

. The difference from the asynchronous

model is the factor of n in p, since in the synchronous model, every node wakes up

exactly once in a each round. Moreover, in the synchronous case (and in the EXCHANGE

gossip variation) there is a possibility to receive 2 messages from the same node in one

73



round (in the asynchronous time model it was impossible to receive 2 messages from

the same node in one timeslot). We assume that if a node receives 2 messages from the

same node at the same round, it will discard the second one. Such an assumption can

only increase the stopping time of the protocol, and will make our analysis simpler.

From that point on, the analysis is analogous to the asynchronous case since Theorem

3.2 does not depend on the time model.

3.3.1 Optimality for Constant Maximum Degree Graphs

Following Theorem 3.1 we can state the main results of the section:

Theorem 3.3. For any connected graph Gn with constant maximum degree, the stop-

ping time of the uniform algebraic gossip protocol with k messages is Θ(k+D) w.h.p.

in the synchronous and asynchronous time models.

Proof. To show the upper bound, we use the following simple claim:

Claim 3.1. For any connected graph Gn with maximum degree ∆ and diameter D:

D ≥ log∆ n− 1.

Proof. Let us sum up all the n vertices of Gn in the following way. We start with an

arbitrary node v and count it as 1. Then we split the sum of n vertices into D parts,

where D is the diameter of Gn. Each part represents number of vertices located at the

distance i (i ∈ [0, .., D]) from the node v. Since we are interested in the lower bound

on D, we can assume the maximum degree for every node (so, the number of parts

in the sum will be minimal). We define ni (i ∈ [0, .., D]) as the number of vertices
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located at the distance i from the node v. Thus we obtain:

n0 + n1 + n2 + · · ·+ nD = n (3.10)

1 + ∆ + ∆2 + · · ·+ ∆D ≥ n (3.11)

∆D+1 − 1

∆− 1
≥ n (3.12)

∆D+1 ≥ n (3.13)

D ≥ log∆ n− 1. (3.14)

Now, using Claim 3.1 and the fact that the maximum degree is constant (i.e.,

∆ = O(1) and thus: D = Ω(log n)), the upper bound follows. For the lower bound,

note that in order to disseminate k messages to n nodes, at least kn transmissions

should occur in the network. In synchronous time model, kn transmissions require

at least k/2 rounds, since every round at most 2n messages are sent (2 transmissions

per communication pair). In the asynchronous time model, kn transmissions require

at least kn/2 timeslots, since at each timeslot at most 2 nodes transmit (due to

EXCHANGE). Thus, in both time models, Ω(k) rounds are required. Moreover, in the

synchronous time model, dissemination of a single message will take at least D rounds,

since in this model, a message can travel at most one hop in a single round. So, for

the synchronous time model, the bound Θ(k+D) is tight and optimal. The last thing

we have to show is that for the asynchronous time model, with high probability we

will need at least Ω(nD) timeslots which are Ω(D) rounds.

Consider two nodes u and v with distance D between them. We will show that,

with high probability, a message will not travel for a distance D (or larger) from u in

less than Dn
2∆3 timeslots. Thus, it is impossible to finish the algebraic gossip protocol in

less than Dn
2∆3 timeslots. Let X =

∑D
i=1Xi, where Xi ∼ Geom(2/n), be the number of

timeslots needed to cross a path of D edges. Notice, that 2/n is a maximum probability
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of sending a helpful message on a given edge in the EXCHANGE communication model.

From Claim 3.1 we have that D ≥ log∆ n− 1 = log2 n
log2 ∆

− 1 ≥ log2 n
2 log2 ∆

.

We will use now Lemma 2.6 with: m = D, p = 2
n
, k = 1

∆3
m
p

= Dn
2∆3 and will

obtain:

Pr

(
X ≤ Dn

2∆3

)
≤
(
e(−1+∆−3)∆−3

)D
(3.15)

≤ ∆−3D. (3.16)

Since there are at most ∆D possible paths of length D starting at u, we can use

union bound to obtain the probability that the number of timeslots needed to travel to

a distance D is at most Dn
2∆3 . This probability will be at most: ∆−3D∆D = ∆−2D. By

taking the smallest value of D, we get the worst case probability: ∆−2D = ∆
−2

log2 n
2 log2 ∆ =

1/n. Thus, we obtain that for ∆ = O(1), stopping time of algebraic gossip is Ω(Dn)

timeslots with high probability. So, also for the asynchronous time model, the bound

Θ(k +D) is tight and optimal.

3.4 TAG: k-dissemination with Tree-based Alge-

braic Gossip

We now describe the protocol TAG (Tree based Algebraic Gossip), which is a k-

dissemination gossip protocol that exploits algebraic gossip in conjunction with a

spanning tree gossip protocol S (see Sec. 3.2). Given a connected network of n nodes

and k messages x1, ..., xk that are initially located at some nodes, the goal of the

protocol TAG is to disseminate all the k messages to all the n nodes. The protocol

consists of two phases. Both phases are performed simultaneously in the following

way: if a node wakes up3 and the total number of its wakeups until now is even (we

3wakes up – selected according to the time model for a communication action.
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Protocol TAG Pseudo code for node v. Example for asynchronous time model.

Require: N(v), k, gossip spanning tree protocol S

Initialize: parent = null // the parent will be set up by S according to the

received messages.

On odd wakeup: // Phase 1: gossip spanning tree protocol S

1: choose parter u ∈ N(v) and exchange messages with it according to S

On even wakeup: // Phase 2: algebraic gossip

2: if obtained parent during the protocol S then

3: exchange messages with parent according to algebraic gossip (RLNC)

On contact from other node w ∈ N(v):

4: if w performs Phase 1 then

5: exchange messages with w according to S

6: else(w performs Phase 2)

7: exchange messages with w according to algebraic gossip (RLNC)

call such a wakeup an even wakeup), it acts according to Phase 1 of the protocol. If

the node wakes up and the total number of its wakeups until now is odd (we call such

a wakeup an odd wakeup), it acts according to Phase 2 of the protocol.

• In Phase 1, a node performs a spanning tree gossip protocol S. Once a node

becomes a part of the spanning tree, it obtains a parent.

• In Phase 2, a node is idle until it obtains a parent in Phase 1. From now

on, the node will perform an EXCHANGE algebraic gossip protocol with a fixed

communication partner – its parent. Notice that the root node will never obtain

a parent, but due to the EXCHANGE scheme, messages will be pushed to it and

pulled from it by its children nodes.
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The following theorem gives an upper bound on the stopping time of the protocol

TAG.

Theorem 3.4. Let t(S) be the stopping time of the gossip spanning tree protocol S

performed at Phase 1, and let d(S) be the diameter of the spanning tree created by S.

For any connected graph Gn, the stopping time of the k-dissemination protocol TAG:

t(TAG) = O(k + log n+ d(S) + t(S)) rounds (3.17)

for synchronous and asynchronous time models, and w.h.p.

In order to prove this theorem, we will find the time needed to finish TAG, after

Phase 1 is completed. Once Phase 1 is completed, every node knows its parent and

thus, in Phase 2, we have the algebraic gossip EXCHANGE protocol on the spanning

tree Tn, where communication partners of the nodes are their parents. The following

lemma gives an upper bound on the stopping time of such a setting.

Lemma 3.2. Let Tn be a tree with n nodes, rooted at the node r, with depth lmax.

There are k initial messages located at some nodes in the tree. Consider algebraic

gossip EXCHANGE protocol with the following communication model: the communication

partner of a node is fixed to be its parent in Tn during the whole protocol. Then, the

time needed for all the nodes to learn all the k messages is O(k+log n+ lmax) rounds

for the synchronous and asynchronous time models, with probability of at least 1− 2
n

.

The proof of Lemma 3.2 is very similar to the proof of Theorem 3.1, and relies on

reducing the problem of algebraic gossip to a simple system of queues. The service time

is geometrically distributed with a worst-case parameter p = 1
2n

. The ∆ is eliminated

from p since each node chooses now a single communication partner. Then, using

Theorem 3.2 we obtain the stopping time of algebraic gossip with on the tree Tn.

Following is the detailed proof of the lemma.
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Proof. On Tn, consider a message flow towards an arbitrary node v (not necessary the

root of Tn) from all other nodes. Once k helpful messages arrive at v, it will reach the

rank k and finish the algebraic gossip protocol. Due to the proposed communication

model, every node in Tn has a fixed communication partner – its parent, so, each edge

e in the tree has at least one node which will issue, on its wakeup, a bidirectional

communication (EXCHANGE) over e. Thus, from every node, a message can be sent

towards v. We ignore messages that are not sent in the direction of v. Ignoring part

of messages can only increase the stopping time of the algebraic gossip protocol.

As in the proof of Theorem 3.1, we define a queuing system Qtree
n by assuming an

infinite queue with a single server at each node. The root of Qtree
n will be an arbitrary

node v, and let lvmax be the depth of the tree Qtree
n . In our communication model,

the communication partner of a node is always its parent in the tree. Thus, in the

EXCHANGE gossip variation, in the asynchronous time model, in a given timeslot, a

helpful message will be sent over the edge in a specific direction with probability of at

least (1 − 1
q
)/n. Thus, we can consider that the service time in our queuing system

is geometrically distributed with parameter p ≥ (1 − 1
q
)/n, and since q ≥ 2, we can

assume the worst case: p = 1
2n

.

Using Theorem 3.2 for the tree Tn rooted at v, with µ = p, we get an upper

bound for the stopping time of the node v, tv = O((k + lvmax + log n)2n) timeslots

with probability of at least 1 − 2
n2 , where the lvmax is the depth of the tree Tn rooted

at v. Since lvmax ≤ 2lmax (where lmax is the depth of Tn rooted at r), we can replace

the lvmax with 2lmax. So, using union bound, we obtain the upper bound (measured in

timeslots) for all the nodes in Tn:

Pr

(⋂
v∈V

tv = O((k + log n+ lmax)2n)

)
> 1− 2

n
. (3.18)

As in the proof of Theorem 3.1, in the synchronous time model, the service time dis-

tribution parameter p will be larger by a factor of n, and the time will be measured in

rounds instead of timeslots. Thus, using the same arguments as in the proof of Theo-
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rem 3.1, we obtain the upper bound of O(k+ log n+ lmax) rounds for the synchronous

time model. Thus, the lemma holds for both time models.

Proof of Theorem 3.4. Since for every choice of the tree root, the depth of the tree Tn

(which was created using protocol t(S)) is bounded by its diameter, we can replace the

lmax in the bound O(k+ log n+ lmax)) with d(S). Now, we just add the stopping time

of Phase 1 (the spanning tree time – t(S)) and the stopping time of Phase 2 (after

Phase 1 has finished), and obtain that the number of rounds needed to complete the

protocol TAG is O(k + log n+ d(S) + t(S)) w.h.p.

3.4.1 1-dissemination as a Spanning Tree Protocol in TAG

The spanning tree task can be successfully performed by a simple gossip broadcast

(or 1-dissemination) protocol. When a node receives for the first time the message, it

marks the sending node as its parent. If more than one message was received during

a single round, then an arbitrary message is selected and its sender is marked as a

parent. In such a way we obtain a spanning tree rooted at the node that initiated the

broadcast protocol. Let us denote a gossip 1-dissemination protocol as B. Then, the

result of Theorem 3.4 can be rewritten as: t(TAG) = O(k + log n+ d(B) + t(B)). An

interesting observation regarding the broadcast protocol B, is that for synchronous

time model the depth of the broadcast tree cannot be larger that the broadcast time

(measured in rounds), i.e., t(B) ≥ d(B). The last is true since a message can not

travel more than one hop in a single round. Thus, for the synchronous time model

we obtain that the number of rounds needed to complete the TAG protocol w.h.p. is:

t(TAG) = O(k+log n+t(B)). We summarize the above idea in the following corollary:

Corollary 3.1. Let B be a a gossip 1-dissemination protocol. Then, the stopping time

of the k-dissemination protocol TAG, is t(TAG) = O(k + log n + d(B) + t(B)) for

asynchronous time model, and t(TAG) = O(k+log n+ t(B)) for the synchronous time

model.
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3.4.2 Optimal All-to-all Dissemination Using TAG

In this section we propose to use the TAG protocol in conjunction with a 1-dissemination

(or broadcast) gossip protocol BRR for spanning tree construction. For the case

where k = Θ(n) messages need to be disseminated, TAG with BRR achieves order

optimal performance. For the case k = Ω(n) the lower bound of any gossip dis-

semination protocol is Ω(n) rounds. The bound from Theorem 3.4 gives t(TAG) =

O(k + log n+ d(S) + t(S)), and if k = n we obtain O(n+ t(S)). Thus, all we need to

show is the existence of a gossip spanning tree protocol that finishes after O(n) rounds

w.h.p. on any graph.

Theorem 3.5. For any connected graph Gn, the stopping time of the broadcast pro-

tocol with the round-robin communication model – BRR is O(n) rounds. In the asyn-

chronous time model, this result holds with probability of at least 1− n(2/e)3n, and in

the synchronous time model, with probability 1.

In order to prove Theorem 3.5 we need the following two lemmas. The first

lemma gives an upper bound on the sum of degrees along any shortest path, and was

presented in [26] (inside the proof of Theorem 2.1). For completeness, we give the

proof of this lemma.

Lemma 3.3 ([26]). For any connected graph Gn with n nodes, the sum of the degrees

of the nodes along any shortest path between any two nodes v and u is at most 3n.

Proof. Without loss of generality, consider a BFS spanning tree of G rooted at some

node v, and some arbitrary leaf u. We will find the maximum degree of the node

located on the path (v → u) at distance i from the root v. Clearly, such a node can

be connected only to the following nodes:

• Nodes that are located at distance i− 1 from the root. (It can not be connected

to the nodes that are closer to the root (than i− 1) since then, its distance from

the root would be i− 1 which contradicts the given BFS execution.)
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• Nodes that are at the same distance i from the root.

• Nodes that are located at distance i+ 1 from the root. (It can not be connected

to the nodes that are farther from the root (than i+1) since then, their distance

from the root would be i+ 1 which contradicts the given BFS execution.)

Let us define mi as the number of nodes at distance i from the root. Clearly,∑n−1
i=0 mi = n. (The node at distance 0 is the root v). The degree of a node (at

distance i from the root) can be at most: di ≤ (mi−1 +mi +mi+1). Thus, the sum of

degrees on a path of length l from the root to a leaf is at most: d =
∑l

i=0 di. Since

l ≤ n− 1, d =
∑l

i=0 di ≤
∑n−1

i=0 di =
∑n−1

i=0 (mi−1 +mi +mi+1) ≤ 3n.

The second lemma gives an upper bound on the sum ofm i.i.d. geometric random

variables.

Lemma 3.4. Let X be a sum of m independent and identically distributed geometric

random variables (each one with parameter p > 0) and E [X] = m
p

. Then, for α > 1:

Pr (X ≤ αE [X]) > 1−
(
αe1−α)m . (3.19)

Proof. First, we will define Y as the sum of k independent Bernoulli random variables,

i.e., Y =
∑k

i=1 Yi, where Yi ∼ Bernoulli(p). Let us notice that:

Pr (X ≤ k) = Pr (Y ≥ m) (3.20)

The last is true since the event of observing at least m successes in a sequence of k

Bernoulli trials implies that the sum of m independent geometric random variables is

no more than k. On the other hand, if the sum of m independent geometric random

variables is no more than k it implies that m successes occurred no later than the k-th

trial and thus Y ≥ m.

Now we will use a Chernoff bound for the sum of independent Bernoulli random

variables presented in [46]: For any 0 < δ < 1 and µ = E [Y ]:

Pr (Y ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)1−δ

)µ
. (3.21)
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Since µ = E [Y ] = kp, and by letting δ = kp−m
kp

we obtain:

Pr (Y ≤ (1− δ)µ) = Pr (Y ≤ m) ≤

(
m

e
m−kp
m kp

)−m
. (3.22)

Pr (Y ≥ m) > 1−

(
m

e
m−kp
m kp

)−m
(3.23)

Pr (X ≤ k) > 1−

(
m

e
m−kp
m kp

)−m
(3.24)

By substituting k = αm
p

= αE [X] (where α > 1) we obtain:

Pr (X ≤ αE [X]) > 1−
(
eα

eα

)−m
. (3.25)

Now we can prove the theorem.

Proof of Theorem 3.5. In this proof we assume the PUSH gossip variation, but it is

clear that the result holds also for EXCHANGE.

Without loss of generality, assume that the message that needs to be dissemi-

nated is initially located at the node v. In the round-robin gossip, when a node is

scheduled to transmit, it transmits a message to its neighbor according to the round

robin scheme. I.e, at every transmission a message is sent to a different neighbor.

Consider a shortest path between v and some other node u. On the shortest path

of length l there is exactly one node at the distance i from v, where i ∈ [0, . . . , l], and

l ≤ n−1. Let di be the degree of a node at the distance i from v. In order to guarantee

the delivery of the message from v to u, we need
∑l

i=0 di transmissions in the following

order: first, we need d0 transmissions of the node v, then d1 transmissions of the next

node in the path v → u, and so on until the message is delivered to u. From Lemma

3.3,
∑l

i=0 di ≤ 3n.

In the asynchronous model, a node transmits at a given timeslot with probability

1
n
. So, the number of timeslots until some specific node transmits is a geometric
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random variable with parameter 1
n
. We define this geometric random variable as X,

i.e., X ∼ Geom
(

1
n

)
. The number of timeslots until 3n specific transmissions occur,

is the sum of 3n independent geometric random variables. Using Lemma 3.4 (with

α = 2) we obtain the bound of O(n2) timeslots (or O(n) rounds) with exponential

high probability. The last allows us to perform union bound for shortest paths to all

other nodes in G, thus obtaining the O(n) bound for the broadcast time.

It is easy to see that in the synchronous time model, 3n specific transmissions will

occur exactly after 3n communication rounds. E.g., after d0 rounds, v will perform d0

transmissions – each one to different neighbor (according to the round-robin scheme).

Thus, the message is delivered to u after at most 3n rounds with probability 1.

Corollary 3.2. Let BRR be a gossip 1-dissemination (broadcast) protocol with the

round-robin communication model. Then, if k = Θ(n) and S = BRR, the stopping

time of the k-dissemination protocol TAG, is t(TAG) = Θ(n).

Proof. Using Theorems 3.4 and 3.5 we obtain the upper bound on the stopping time

of TAG with BRR as a spanning tree construction protocol: O(k + log n + d(S) + n)

which is Θ(n) for k = Θ(n) and S = BRR.

3.4.3 Tree Based Protocol: Discussion

The main contribution of the TAG protocol is not in proposing a practical dissemina-

tion approach but in making an additional step towards understanding the behavior of

algebraic gossip. TAG is a tree based protocol and therefore it is natural to question

the fitness of such protocol for gossiping and in particular network coding. A tree

topology is obviously very vulnerable to edges failures, even if one of the tree edges

disconnects, information dissemination will fail. But this could be solved with a more

robust topology than a tree, a topology with several outgoing edges and not only one.

This observation is a major contribution of the chapter, namely the distinction be-

tween outgoing and incoming edges in gossip protocols that are based on EXCHANGE. In
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TAG, there is a single outgoing edge for each node, the edge that points to your parent,

while the incoming degree is unbounded. In the gossip process, nodes only initiate

EXCHANGE on their outgoing edges (uniformly at random). So for any topology T , such

that the maximum outgoing degree ∆out is constant (e.g., in a spanning tree ∆out = 1),

all our results for TAG hold. There are several ways to generate such robust topolo-

gies, one is to build several spanning trees instead of just one. In phase 1 we can build

a constant number of spanning trees (let’s say c trees) and thus a node in phase 2 will

choose a specific parent with probability of 1/c. Clearly, having a constant number of

neighbors during the phase 2 will not change the asymptotic upper bound but will add

a factor of robustness to the TAG protocol. More recently [16] proposed a mechanism

that builds a sub-graph with diameter O(D+ polylog(n)) (where D is the diameter of

the original graph) and ∆out = O(1) in time O(polylog(n)), using this sub-graph for

algebraic gossip will give optimal results when k > t where t = O(polylog(n)) is the

running time. More generally, our results shift the focus of the problem of the stop-

ping time of algebraic gossip to the problem of a fast generation of a sub-graph with

bounded out degree on which the gossip will take place. Considering this, a major

open problem is how to generate (via gossip) a topology T which is a sub-graph of the

original graph, with diameter O(D + t) and ∆out = O(1) in time O(t) where t is as

small as possible. Our results indicate that algebraic gossip on T will be order optimal

for any k. A related interesting question is about lower bounds for the running time.

Another important question about TAG is the need of coding messages when

∆out = O(1) and in particular when ∆out = 1. If the topology for gossip is a tree, why

can’t we use a standard broadcast techniques without coding (i.e., mixing) messages?

The question about the necessity of network coding was already raised before; in

[27], the authors give a protocol for disseminating k messages in a complete graph

in O(k + lnn) (which is optimal) without network coding but with an additional

information exchange before the actual message transfer. The idea is that nodes asked
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their neighbors only for missing messages, such that every message sent is helpful. This

can be done in our case as well, or in general in every gossip scheme. But when there

is no bound on the incoming degree (as in our case) such a procedure will have to

maintain checklists and request different messages from different neighbors. Network

coding and algebraic gossip give a much simpler procedure that still guarantees with

(enough) high probability sending/receiving helpful messages

3.5 Conclusions

In this chapter we have studied the problem of disseminating information from a

subset of k nodes to all the n nodes on connected graphs. While Chapter 2 has been

focused on the all-to-all dissemination problem (i.e., n-dissemination), the current

chapter deals with k-disemination. We prove bounds for the uniform algebraic gossip

which are optimal for some graph families (e.g., for graphs with a constant maximum

degree). For some topologies, our bounds are better than any previously known results.

Moreover, we propose here an alternative dissemination technique based on algebraic

gossip (the TAG protocol) which is an optimal dissemination scheme for many cases.
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Chapter 4

Optimal Power Allocation for Mul-

tiple Transmitters

4.1 Introduction

Power control is one of the most fundamental problems in wireless networks. The

rules governing the availability and quality of wireless connections can be described

by physical or fading channel models (cf. [50, 7, 52]). Among those, a commonly

studied model is the signal-to-interference ratio (SIR) model. 1 In the SIR model,

the energy of a signal fades with the distance to the power of the path-loss parameter

α. Formally, let d(ri, tj) be the Euclidean distance between the receiver ri and the

transmitter tj, and assume that each transmitter ti transmits with power Xi. At the

location of receiver ri, the transmission of station ti is correctly received if

Xi · d(ri, ti)
−α∑

j 6=iXj · d(ri, tj)−α
≥ β. (4.1)

In the basic setting, known as the SISO (Single Input, Single Output) model, we are

given a network of n receivers {r1 . . . rn} and n transmitters {t1 . . . tn} embedded in

Rd, where each transmitter is assigned to a single receiver (see Figure 4.1 (a) for an

1This is a special case of the signal-to-interference & noise ratio (SINR) model where the noise is

zero.
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Figure 4.1: (a) – Square system, i.e., each receiver has a single dedicated transmit-

ter (SISO case). (b) – Nonsquare system, i.e., each receiver has multiple dedicated

transmitters (MISO case).

illustration). The main question then is to find the optimal (i.e., largest) β∗ = maxX β

and the power assignment X
∗

that achieves it when we consider Eq. (4.1) at each

receiver ri. The larger β is, the simpler (and cheaper) is the hardware implementation

required to decode messages in a wireless device.

We now turn to our main problem – optimal power allocation in MISO (Multiple

Input Single Output) systems. In the MISO setting, a set of multiple synchronized

transmitters, located at different places, can transmit at the same time to the same

receiver (see Figure 4.1 (b) for an illustration). Formally, for each receiver ri we have

a set of ki transmitters, of a total of m transmitters. Let T represent the set of all m

transmitters, and Ti represent the set of ki transmitters dedicated to receiver ri. The

signal to interference (SIR) equation at receiver ri is then:∑
tj∈Ti Xj · d(ri, tj)

−α∑
tj∈T\Ti Xj · d(ri, tj)−α

≥ β . (4.2)

In such a setting, we would like to find the best way to organize the power alloca-

tion between the transmitters of each receiver. We assume that the signals from the

transmitters are perfectly synchronized, so they just sum up at the receiver.
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We will show that there exists an optimal power allocation in which only one

transmitter per receiver can transmit in order to achieve β∗. In other words, somewhat

surprisingly, the option of cooperation (i.e., splitting the available power between

multiple transmitters) does not improve the situation, in the sense that in the optimum

solution, no cooperation is needed and only one transmitter per receiver needs to

work. Hence, the additional power of having several potential transmitters per receiver

translates into choosing the “best” single transmitter and not into sharing the available

power between the transmitters in some way, as one might have expected.

4.1.1 Related Work of MISO Power Control

In this subsection we highlight the differences between our proposed MISO power-

control algorithm and the existing approaches to this problem. The vast literature on

power control in MISO and MIMO systems considers mostly the joint optimization

of power control with beamforming (which is represented by a precoding and shaping

matrix). In the commonly studied downlink scenario, a single transmitter with m

antennae sends independent information signals to n decentralized receivers. With

this formulation, the goal is to find an optimal power vector of length n and an n×m

beamforming matrix. The standard heuristic applied to this problem is an iterative

strategy that alternately repeats a beamforming step (i.e., optimizing the beamforming

matrix while fixing the powers) and a power control step (i.e., optimizing powers

while fixing the beamforming matrix) until convergence [15, 14, 21, 53, 18]. In [15],

the geometric convergence of such a scheme has been established. In addition, [55]

formalizes the problem as a conic optimization program that can be solved numerically.

In summary, the current algorithms for MIMO power-control (with beamforming) are

of numeric and iterative flavor, though with good convergence guarantees. In contrast,

the current work considers the simplest MISO setting (without coding techniques)

and aims at characterizing the mathematical structure of the optimum solution. In
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particular, we establish the fact that the optimal max-min SIR value is an algebraic

number (i.e., the root of a characteristic polynomial) and the optimum power vector

is a 0∗ solution. Equipped with this structure, we design an efficient algorithm that

is more accurate than off-the-shelf numeric optimization packages that were usually

applied in this context. Needless to say, the structural properties of the optimum

solution are of theoretical interest in addition to their applicability.

4.1.2 Overview of Results of the Current Chapter

In this chapter we make two contributions. First, we show how to use the Generalized

Perron-Frobenius Theorem presented in [4] to state that for the MISO power allocation

problem (where each receiver has multiple dedicated transmitters) there exists an

optimal solution in which only one transmitter per receiver transmits (we call such a

solution a 0∗ solution).

While in the SISO case (single transmitter per each receiver), the optimal so-

lution can be computed in polynomial time (by just finding the Eigen system of an

appropriate matrix); this is not clear in the extended (MISO) case, since the corre-

sponding optimization problem (Problem 4.5) is not convex [11] (and also not log-

convex as we showed in [4]). Even if we know that the optimal solution can be a 0∗

solution (only one transmitter per receiver transmits), there are exponentially many

choices even if each receiver has only two transmitters to choose from. So, our second

(and the main) contribution here is a polynomial time algorithm to find the optimal

SIR β∗ and the corresponding power allocation X
∗
. The algorithm uses the fact that

for a given β we get a relaxed problem that is convex (actually it becomes linear).

This allows us to employ the well-known ellipsoid method [42] for testing a specific

β for feasibility. Hence, the problem reduces to finding the maximum feasible β, and

the algorithm does so by applying binary search on β. Clearly, the search results in

an approximate solution. Obtaining an exact optimal β∗, along with an appropriate
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vector X
∗
, is another challenging aspect of the algorithm, which is successfully solved

via an original approach based on the extended PF Theorem [4]. Finally, we prove

that the proposed algorithm is polynomial.

4.2 Optimal Power Allocation using Perron-Frobenius

Theorem

4.2.1 Preliminaries

Consider a set of n receivers R = {r1, . . . , rn} and a set of m (m ≥ n) transmitters

T = {t1, . . . , tn}. We say that transmitter tj is dedicated to receiver ri if the signal of

tj is the desired signal for ri and not an interference. Each receiver ri (i ∈ [1, . . . , n])

has ki (ki ≥ 1) dedicated transmitters, so
∑n

i=1 ki = m. We denote the set of all

transmitters dedicated to the receiver ri as Ti; consequently, |Ti| = ki. We assume

that all the transmitters dedicated to the same receiver transmit the same information

and are perfectly synchronized; therefore, their powers (multiplied by the appropriate

gains) sums up at the receiver.

Let d(ri, tj) be the Euclidean distance between the receiver ri and the transmitter

tj. We assume that the signal transmitted by tj is received by ri with the gain

d(ri, tj)
−α, where α is the path-loss parameter and usually equals 2. We denote gain

by g(i, j), which means that g(i, j) = d(ri, tj)
−α. Now we can define a system L =

〈A,B〉 as a pair of matrices A,B ∈ Rn×m that captures the mutual gains between

all the receiver-transmitter pairs, and the information regarding which transmitter is

dedicated to which receiver. Following are the definitions of the matrices:

91



A(i, j) =

g(i, j) if tj /∈ Ti

0 if tj ∈ Ti
(4.3)

B(i, j) =

g(i, j) if tj ∈ Ti

0 if tj /∈ Ti
(4.4)

It is easy to see that row i in A represents all the interference to the receiver

ri, while row i in B represents all the desired signals (i.e., signals from transmitters

that are dedicated to ri). A system L = 〈A,B〉 is called a square system if m = n

(i.e., each receiver has exactly one dedicated transmitter), and such a square system

is denoted by Ls. Notice that the matrices A, B in Ls are square n× n matrices, and

we assume that, in square systems, tj is dedicated to rj (j ∈ [1 . . . , n]); hence, B is

diagonal.

One can also obtain a square system Ls from a non-square system L by selecting

a single dedicated transmitter for each receiver and eliminating all the other transmit-

ters. In this case, Ls is called a square sub-system of L. Notice that there are many

possible square sub-systems, since there are many possible options to select a single

dedicated transmitter for each receiver. In a square sub-system (as in a square system)

we will assume that tj is dedicated to rj (i.e., B is diagonal), which can be achieved

by simply renaming the transmitters. For the above description, we can understand

that the MISO (Multiple Input Single Output) case, mentioned in the Introduction,

corresponds to a non-square system, while the SISO (Single Input Single Output)

corresponds to a square system.

The following irreducibility definitions were introduced in [4] and are necessary

for applying the Perron-Frobenius Theorem. A square system Ls = 〈A,B〉 is irre-

ducible if B is a nonsingular matrix and A is an irreducible matrix. A system L is

irreducible if all its possible square sub-systems are irreducible.
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Observation 4.1. In the context of the power allocation problem (which is formally

determined by Eq. 4.3 and 4.4), systems Ls and L are always irreducible.

Proof. First we show that Ls = 〈A,B〉 is irreducible. The matrix B is diagonal and

thus nonsingular. Now we show that matrix A is irreducible. In a square system,

every receiver has exactly one dedicated transmitter; therefore in row i of A we will

find 0 at position i and non-zero values at the other positions. Consider a directed

graph associated with A. Clearly, from any vertex, there is a directed edge to any

other vertex (except the vertex itself). Thus, the graph is strongly connected, which

implies that the matrix is irreducible. Thus, any square system Ls is irreducible.

The last implies that all the square sub-systems of L are also irreducible (any square

sub-system is a square system by itself) and thus, L is irreducible.

Problem Formulation. Given a system L = 〈A,B〉,

maximize β subject to: (4.5)

A ·X ≤ 1

β
·B ·X,

∥∥X∥∥
1

= 1, X ≥ 0.

Where β is the signal to interference (SIR) ratio that should be satisfied at each

receiver. The optimal (maximal) value of β is denoted by β∗, while the maximization

is performed over all possible power allocation vectors X, i.e., β∗ = maxX β. Power

allocation that achieves β∗ is denoted by X
∗
. Notice also the normalization constraint∥∥X∥∥

1
= 1, which prevents us from having an infinite number of power allocations for

a given SIR β. The SIR constraint A ·X ≤ 1
β
·B ·X can be understood by looking at

the standard SIR equation for each receiver ri:

desired signal to ri
interference to ri

=

∑
tj∈Ti Xj · g(i, j)∑
tj∈T\Ti Xj · g(i, j)

≥ β , (4.6)

and combining them in a matrix form. If the optimal power vector X
∗

appears to

have exactly n non-zero values, such a solution means that for each receiver there is

exactly one dedicated transmitter, and we denote such a solution - a 0∗ solution.
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4.2.2 Optimal Power Allocation for Square Systems

As it turns out, the power control problem for square systems can be solved elegantly

using the Perron-Frobenius (PF) Theorem, as was proposed in a seminal work of

Zander [56]. Consider the following optimization problem (Z ∈ Rn×n):

maximize β subject to: (4.7)

Z ·X ≤ 1

β
·X,

∥∥X∥∥
1

= 1, X ≥ 0.

Let β∗ denote the optimal solution for Program 4.7. The Perron-Frobenius

(PF) Theorem characterizes the solution to this optimization problem and shows the

following:

Theorem 4.1 (PF Theorem, short version). Let Z be an irreducible nonnegative ma-

trix. Then β∗ = 1/r, where r ∈ R>0 is the largest Eigen value of Z, called the Perron–

Frobenius (PF) root of Z. There exists a unique (Eigen-)vector P > 0,
∥∥P∥∥

1
= 1,

such that Z ·P = r ·P, called the Perron vector of Z.

So, given a square system Ls = 〈A,B〉 we can define a matrix Z = B−1 ·A (this

is possible since B is diagonal in any square system). Clearly, if A is irreducible, so is

Z. Thus, by rewriting the Problem 4.5 with Z instead of (B−1 ·A) we obtain Problem

4.7, which can be simply solved by Theorem 4.1.

4.2.3 Optimal Power Allocation for Nonsquare Systems

In [4] we extended Theorem 4.1 to nonsquare matrices. Consider the following ex-

tended optimization problem. (Here A,B ∈ Rn×m.)

maximize β subject to: (4.8)

A ·X ≤ 1

β
·B ·X,

∥∥X∥∥
1

= 1, X ≥ 0.
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The problem for square systems (SISO case with a single transmitter per receiver)

was defined for a square matrix, so the rise of Eigen values seems natural. In contrast,

in the generalized setting, the situation seems more complex. In [4] we showed an

extension of the PF Theorem to nonsquare matrices and systems.

Theorem 4.2 (Multiple Choice PF Theorem, short version [4]). Let 〈A,B〉 be an

irreducible nonnegative system. Then β∗ = 1/r, where r ∈ R>0 is the largest Perron–

Frobenius (PF) root of all n× n square sub-systems. There exists a vector P ≥ 0 such

that A ·P = r · B ·P and P has n entries greater than 0 and m− n entries equaling

0 (referred to as a 0∗ solution).

Since the system L is irreducible (see Observation 4.1), we can apply Theorem

4.2 to conclude that there exists an optimal 0∗ solution for our problem. In the next

section we will show how to actually find this solution (i.e., the optimal SIR β∗ and

the optimal power vector X) in polynomial time.

4.3 Computing the Optimal Solution

In this section we present a polynomial time algorithm (Algorithm Comp-0∗) for

computing the optimal 0∗ solution for the MISO power allocation problem.

The method By Theorem 4.2, there exists an optimal 0∗ solution for Program

(4.5) with β = β∗. For ease of analysis, we assume that the gains are integral, i.e.,

g(i, j) ∈ Z+, for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. If this does not hold, then

the gains can be rounded or scaled to achieve this. Let

Gmax(L) = max
i∈{1,...,n},j∈{1,...,m}

{g(i, j)} , (4.9)

and define Tellips as the running time of the Ellipsoid method [42] for the following

optimization program, which becomes linear due to the fact that β is no longer a
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variable:

maximize 1 subject to: A ·X ≤ 1

β
·B ·X,

∥∥X∥∥
1

= 1, X ≥ 0. (4.10)

Recall that are concerned with an exact optimal solution for a non-convex opti-

mization problem (see Program (4.5)). Using the convex relaxation of Program (4.10),

a binary search can be applied for finding an approximate solution up to a predefined

accuracy. The main challenge is then to find (a) an optimal solution (and not an

approximate solution), and (b) among all the optimal solutions, to find one that is a

0∗ solution. Notice that the number of possible allocations where each receiver has a

single active transmitter is exponentially large (even when every receiver has only two

dedicated transmitters.)

Here we prove the following.

Theorem 4.3. The optimal 0∗ solution for the MISO power allocation problem can

be computed in time O(n3 · Tellips · (log (n · Gmax) + n)).

Let

∆β = (nGmax)−8n3

. (4.11)

The key observation in this context is the following.

Lemma 4.1. Let Ls1 and Ls2 be any two square sub-systems of a system L, with optimal

SIR values β1 and β2, respectively. Then (assuming β1 6= β2),

|β1 − β2| > ∆β.

By performing a polynomial number of steps of a binary search for the optimal

β∗, one can converge to a value β− that is at most ∆β far from β∗, i.e., β∗−β− ≤ ∆β.

Let Rangeβ∗ = [β−, β∗]. Then by Theorem 4.2, we are guaranteed that for any square
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sub-system Ls such that β∗(Ls) ∈ Rangeβ∗ , it holds that β∗(Ls) = β∗. To prove

Lemma 4.1, we first show that there is a lower bound on the difference between any

two different PF Eigenvalues of any two square sub-systems, i.e., we show that for any

two square sub-systems Ls1,Ls2, their PF roots r1 and r2 cannot be too close if they

are different.

Recall that for a square sub-system Ls = 〈A,B〉 we define a matrix Z(Ls) =

B−1·A, where B can be considered to be diagonal (receiver ri has exactly one dedicated

transmitter ti). We begin the analysis by scaling the entries of Z(Ls) to obtain an

integer-valued matrix Z int. The scaling is needed in order to employ a well-known

bound on the minimal distance between the roots of integer polynomials presented in

the following lemma. The näıve height of an integer polynomial is the maximum of

the absolute values of its coefficients.

Lemma 4.2 (Bugeaud and Mignotte in [13]). Let P (X) and Q(X) be nonconstant in-

teger polynomials of degree n and m, respectively. Denote by rP and rQ a zero of P (X)

and Q(X), and H(P ) and H(Q) the näıve heights of P (X) and Q(X), respectively.

Assuming that P (rQ) 6= 0, we have:

| rP − rQ| ≥ 21−n(n+ 1)
1
2
−m(m+ 1)−

n
2H(P )−mH(Q)−n .

We now turn to prove Lemma 4.1.

Proof of Lemma 4.1. Recall that Z(Ls) = B−1 · A, therefore,

Z(Ls)i,j =

g(i, j)/g(i, i) if i 6= j

0 if i = j

,

where g(i, i) correspond to the gain of the unique transmitter ti of receiver ri.

Let us denote Z1 = Z(Ls1), Z2 = Z(Ls2), and r1 and r2 will be the PF roots of

Z1 and Z2, respectively. To employ Lemma 4.2, we first scale Z1 and Z2 to obtain

two integer-valued matrices Z int
1 and Z int

2 . The new matrix Z int
b , for b ∈ {1, 2}, is
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constructed by multiplying each entry of Zb by the common denominator of its entries,

i.e., Z int
b (i, j) = Zb(i, j) ·

∏
i (g(i, i1) · g(i, i2)), where ib (b ∈ {1, 2}) is the index of the

single transmitter of receiver ri in Zb. Thus, all entries of Z int
b are integers and bounded

by G2n
max (since g(i, j) ≤ Gmax).

Let P1(x) = det(x · I − Z int
1 ) and P2(x) = det(x · I − Z int

2 ) be the characteristic

polynomials of the matrices Z int
1 and Z int

2 , respectively (I is the n×n identity matrix).

Note that P1(x) and P2(x) are integer polynomials of degree n, and H(P1), H(P2) ≤

G2n2

max (since | det(Z int
b )| ≤ (G2n

max)
n). Let rint

1 and rint
2 correspond to the PF Eigenvalues

of Z int
1 and Z int

2 , respectively. Thanks to Lemma 4.2 we obtain:

|rint
1 − rint

2 | ≥ 21−n(n+ 1)
1
2
−n(n+ 1)−

n
2 (G2n2

max)
−n(G2n2

max)
−n = 21−n(n+ 1)

1−3n
2 G−4n3

max .

Finally, by definition of Z int
b ,

|rint
1 − rint

2 | = |r1 − r2|
∏
i

(g(i, i1) · g(i, i2)) ,

and thus

|r1 − r2| ≥
21−n(n+ 1)

1−3n
2 G−4n3

max∏
i (g(i, i1) · g(i, i2))

≥ 21−n(n+ 1)
1−3n

2 G−4n3

max

G2n
max

≥ (nGmax)−6n3

.

We now turn to translate the distance between r1 and r2 into the distance between 1/r1

and 1/r2 (corresponding to the optimal SIR values β1 and β2 of the square sub-systems

Ls1 and Ls2, respectively). The next auxiliary claim gives a bound for λ ∈ EigV al(Z)

as a function of Gmax.

Claim 4.1. Let λ be an Eigenvalue of an n× n matrix Z such that |Z(i, j)| ≤ Gmax.

Then |r| ≤ nGmax.

Proof. Let X be the Eigenvector of Z and assume that ||X||2 = 1. Since X
T ·Z ·X =
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λX
T ·X = λ, we have:

|λ| = |XT
ZX|

= |
∑
i

∑
j

X(i)Z(i, j)X(j)|

≤ Gmax · |
∑
i

∑
j

X(i) ·X(j)|

= Gmax · |
∑
i

X(i)| · |
∑
j

X(j)|

= Gmax · ‖X‖2
1.

Now we show that ‖X‖2
1 ≤ (

√
n‖X‖2)2.

(
√
n‖X‖2)2 − ‖X‖2

1 = n(x2
1 + x2

2 + · · ·+ x2
n)− (x1 + x2 + · · ·+ xn)2

= (n− 1)x2
1 + (n− 1)x2

2 + · · ·+ (n− 1)x2
n

− 2x1x2 − 2x1x3 − · · · − 2xn−1xn

= (x1 − x2)2 − (x1 − x3)2 − · · · − (xn−1 − xn)2 ≥ 0.

Hence,

|λ| ≤ Gmax · ‖X‖2
1

≤ Gmax · (
√
n‖X‖2)2 = nGmax.

Now, we can finish the proof of Lemma 4.1. Since r1, r2 ∈ (0, nGmax], it follows

that:

|β2 − β1| =
∣∣∣∣ 1

r2

− 1

r1

∣∣∣∣ =

∣∣∣∣r1 − r2

r1r2

∣∣∣∣ ≥ |r1 − r2|
(nGmax)2

≥ (nGmax)−8n3

.
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4.3.1 Algorithm description

We now describe the algorithm for computation of the optimal 0∗ solution. The

algorithm comprises two phases. In the first phase, the algorithm searches for the

nearly optimal feasible SIR, namely for the β−, such that β∗ − β− ≤ ∆β. Then, in

the second phase, the algorithm iteratively constructs the square sub-system Ls that

achieves β−, which means that Ls also achieves β∗. The last is true since, due to

Theorem 4.2, there exists a square sub-system that achieves β∗, and from Lemma 4.1

we know that any square system that achieves SIR that is less than ∆β close to β∗

must also achieve β∗.

We define a function that will indicate whether a given SIR β is feasible for the

given system (i.e., for the optimization Problem 4.10):

f(β,L) =


1, if there exists X such that

∥∥X∥∥
1

= 1, X ≥ 0, and

A ·X ≤ 1/β ·B ·X ,

0, otherwise.

Note that f can be computed in polynomial time using the Ellipsoid method.

The pseudocode of the algorithm is presented formally in Figure 4.2.

To establish Theorem 4.3, we prove the correctness of Algorithm Comp-0∗ and

bound its runtime. We begin with two auxiliary claims.

Claim 4.2. β∗(L) ≤ Gmax.

Proof. Consider a square sub-system of L that achieves β∗. Now, assuming n > 2, we

remove all the transmitter-receiver pairs except the two: (r1, t1) and (r2, t2). Clearly,

optimal SIR β′ for this 2-pairs square system can be only larger than β∗. So, we

obtain:

β∗ ≤ β′ = min

{
g(1, 1) ·X1

g(1, 2) ·X2

,
g(2, 2) ·X2

g(2, 1) ·X1

}
≤ min

{
Gmax ·X1

X2

,
Gmax ·X2

X1

}
.
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Algorithm Comp-0∗

/* Binary search phase: finding β− such that β∗−β− < ∆β */

1. β ← 1;

2. While f(β,L) = 1 do:

β ← 2β;

3. If β > 1, then β− ← β/2, else β− ← 0;

4. β+ ← β;

5. While β+−β− ≥ ∆β do: /* from now on β− ≤ β∗ < β+ */

(a) β ← (β− + β+) /2;

(b) If f(β,L) = 1, then β− ← β, else β+ ← β;

/* Transmitters elimination phase: finding a 0∗ solution */

6. L1 ← L;

7. For i = 1 to n do:

(a) Remove from Li all the transmitters dedicated to the re-

ceiver ri except one, such that: f(β−,Li) = 1;

(b) Li+1 ← Li;

/* Ln is a square sub-system of L */

8. β∗ ← 1/r; X
∗ ← P;

Figure 4.2: Pseudocode of Algorithm Comp-0∗ .
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0 Gmax

. . .. . .

β∗β−

∆β

Figure 4.3: By the end of the first phase, the algorithm finds β−.From Lemma 4.1

and Theorem 4.2, we can conclude that any square system that satisfies β, which is

at most ∆β lower than β∗, satisfies also β∗ (i.e., such a square system corresponds to

an optimal 0∗ solution).

Clearly, min
{
X1

X2
, X2

X1

}
≤ 1, thus we get β∗(L) ≤ Gmax as required.

Claim 4.3. By the end of phase 1, Alg. Comp-0∗ finds β− such that β∗(L)−β− ≤ ∆β.

Proof. Clearly, f(β,L) = 1 for every β ∈ (0, β∗]. By steps 3 and 5b in Alg. Comp-

0∗ (Figure 4.2), we have that f(β−,L) = 1. Therefore β− < β∗(L). Note that by the

stopping criterion of step 5, we are in a situation where f(β+,L) = 0, f(β−,L) = 1

and β+−β− ≤ ∆β. This implies that β∗ ∈ [β−, β+) as required. The claim follows.

We are now ready to complete the proof of Theorem 4.3.

Proof of Theorem 4.3. We show that Alg. Comp-0∗ satisfies the requirements of the

theorem. Note that at the beginning of phase 2 of Alg. Comp-0∗ , the computed

value β− is at most ∆β apart from β∗ (see Figure 4.3 for an illustration). In phase

2, the algorithm iteratively constructs a square sub-system of L. At iteration i of the

for-loop, we start with a system Li, for which β− is feasible, and eliminate all the

transmitters of receiver ri except one. The single transmitter that will remain has

to satisfy system feasibility for β−. Assume by contradiction, that there is no single

transmitter satisfying the feasibility condition. Then, it means that there is no 0∗

solution achieving β− for the system Li, which contradicts Theorem 4.2. Thus, at
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every iteration i ∈ [1, . . . , n] the algorithm will find a single transmitter for receiver

ri that will satisfy system feasibility for β−. (See Figure 4.4 for an illustration of the

algorithm’s step 7(a).)

By the end of the algorithm, we get a square sub-system Ln that is feasible for

β−, and thus, according to Lemma 4.1, achieves β∗. The optimal power allocation X

is found using Theorem 4.1. Notice that before using Theorem 4.1, we rename the

transmitters in the system Ln so that tj is dedicated to rj (j ∈ [1, . . . , n]) and thus

matrix B becomes diagonal, allowing us to obtain the required matrix Z = B−1 · A

(Figure 4.5 shows the renamed system). Hence, the correctness of the algorithm is

established.

Finally, we analyze the runtime of the algorithm. Note that there are

O(log (β∗(L)/∆β) + n)

calls for the Ellipsoid method (computing f(β−,Li)), namely, O(log (β∗(L)/∆β)) calls

in the first phase and n calls in the second phase. By plugging Eq. (4.9) in Claim 4.2,

Theorem 4.3 follows.

4.4 Conclusions

In this chapter we gave a solution to the power allocation problem with multiple

transmitters (also known as the MISO system). First, using the Generalized (Multiple

Choice) Perron-Frobenius Theorem, proved in [4], we can state that there exists an

optimal solution in which only one transmitter for each receiver can transmit (we call

such a solution – a 0∗ solution). Then, we gave a polynomial time algorithm for

finding the optimal SIR value β∗ and the corresponding power allocation vector X
∗
.

We proved the correctness and the running time of the algorithm.

We note that our result, regarding the existence of the optimal 0∗ solution,

is (somewhat) in contradiction to the well-established fact that MISO and MIMO
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Figure 4.4: (a) Example of system L1 (initial given system). (b) Example of system

L2. Receiver r1 is left with a single active transmitter. (c) Example of system L3.

Receivers r1 and r2 each has a single active transmitter. (d) Example of system

Ln, which is a square system since each receiver has exactly one dedicated active

transmitter.
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Figure 4.5: Renaming of system Ln so that tj is dedicated to rj (j ∈ [1, . . . , n]).

(Multiple Input Multiple Output) systems, where transmitters transmit in parallel,

do improve the capacity of wireless networks, which corresponds to increasing β∗ [28].

There are several reasons for this apparent dichotomy, but they are all related to the

simplicity of our SIR model. For example, if the ratio between the maximal power to

the minimum power is bounded, then our result does not hold any more (as proved

in [4]). In addition, our model does not capture random noise and small scale fading

and scattering [28], which are essential for the benefits of a MIMO system to manifest

themselves.
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