
1

Tight Bounds for Algebraic Gossip on Graphs
Michael Borokhovich Chen Avin Zvi Lotker

Abstract—We study the stopping times of gossip algorithms for
network coding. We analyze algebraic gossip (i.e., random linear
coding) and consider three gossip algorithms for information
spreading: Pull, Push, and Exchange. The stopping time of
algebraic gossip is known to be linear for the complete graph, but
the question of determining a tight upper bound or lower bounds
for general graphs is still open. We take a major step in solving
this question, and prove that algebraic gossip on any graph of
size n is O(∆n) where ∆ is the maximum degree of the graph.
This leads to a tight bound of Θ(n) for bounded degree graphs
and an upper bound of O(n2) for general graphs. We show that
the latter bound is tight by providing an example of a graph
with a stopping time of Ω(n2). Our proofs use a novel method
that relies on Jackson’s queuing theorem to analyze the stopping
time of network coding; this technique is likely to become useful
for future research.

I. INTRODUCTION

Randomized gossip-based protocols are attractive due to
their locality, simplicity, and structure-free nature, and have
been offered in the literature for various tasks, such as ensuring
database consistency and computing aggregate information
[12], [13], [2]. Consider the case of a connected network
with n nodes, each holding a value it would like to share
with the rest of the network. Motivated by wireless networks
and limited resource sensor motes, in recent years researchers
have studied the use of randomized gossip algorithms together
with network coding for this multicast task [16], [14]. The
use of network coding protocols for multicast has received
growing attention due to the ability of such protocols to
significantly increase network capacity. For a basic network
coding example, see [7].

In this work we consider algebraic gossip, a gossip-based
network coding protocol known as random linear coding [10].
In the discussion on gossip-based protocols we distinguish
between the gossip algorithm and the gossip protocol. A
gossip algorithm is a communication scheme in which at every
timeslot, a random node chooses a random neighbor to com-
municate with. We consider three known gossip algorithms:
PUSH: a message is sent to the neighbor, PULL: a message
is sent from the chosen neighbor, and EXCHANGE: the two
nodes exchange messages. The gossip protocol, on the other
hand, determines the content of messages sent. In algebraic
gossip protocol, the content of the messages is a random
linear combination of all messages stored by the sending
node. Once a node has received enough independent messages
(independent linear equations) it can solve the system of linear
equations and discover all the initial values of all other nodes.

We study the performance of algebraic gossip on arbitrary
network topologies, where information is disseminated from

Authors are with the Department of Communication Systems Engineer-
ing, Ben-Gurion University of the Negev, Israel, e-mails:{borokhom, avin,
zvilo}@cse.bgu.ac.il.

all nodes in the network to all nodes, i.e., all-to-all dissemina-
tion. Previously, algebraic gossip was considered with PUSH
and PULL gossip algorithms, here we also study the use of
EXCHANGE, which can lead to significant improvements for
certain topologies (as we show). Our main goal is to find tight
bounds for the stopping time of the algebraic gossip protocol,
both in expectation and with high probability (w.h.p.), i.e.,
with probability of at least 1− 1

n .
The stopping time question, i.e., bounding the number of

rounds until protocol completeness, has been addressed in the
past. Deb et al. [6] studied algebraic gossip using PULL and
PUSH on the complete graph and showed a tight bound of
Θ(n), a linear stopping time, both in expectation and with
high probability. Boyd et al. [2], [3] studied the stopping
time of a gossip protocol for the averaging problem using
the EXCHANGE algorithm. They gave a bound for symmetric
networks that is based on the second largest eigenvalue of the
transition matrix or, equally, the mixing time of a random walk
on the network, and showed that the mixing time captures
the behavior of the protocol. Mosk-Aoyama and Shah [18]
used a similar approach to [2], [3] to analyze algebraic gossip
on arbitrary networks. They consider symmetric stochastic
matrices that (may) lead to a non-uniform gossip and gave
an upper bound for the PULL algorithm that is based on
a measure of conductance of the network. As the authors
mentioned, the offered bound is not tight, which indicates that
the conductance-based measure does not capture the behavior
of the protocol.

A recent independent work by Vasudevan and Kudekar [20]
also offered the use of EXCHANGE together with algebraic
gossip. Moreover, the authors give a uniform strong bound on
algebraic gossip for arbitrary networks: O(n log n) in expec-
tation and O(n log2 n) with high probability. The worst case
performance of algebraic gossip was not previously addressed
in the literature.

Overview of Our Results
The main contribution of this paper is new tight bounds

for the stopping time of algebraic gossip on arbitrary graphs
1. First, in Theorem 4 we disprove the results of [20] by
providing a graph for which algebraic gossip takes Ω(n2)
rounds. Our main result then, Theorem 1, gives an upper bound
of O(∆n) for the stopping time of algebraic gossip on any
graph , where ∆ is the maximum degree in the graph.

Theorem 1. For the asynchronous (synchronous) time model
and for any graph G of size n with maximum degree ∆, the
stopping time of algebraic gossip is O(∆n) rounds both in
expectation and with high probability.

1The short version of this paper appeared in the Proceedings ISIT 2010
[1].

2

This result immediately leads to two interesting corollaries.
In Corollary 1 we state a matching upper bound to Theorem 4 :
for any graph of size n, since the max degree ∆ = n, algebraic
gossip will stop w.h.p. in O(n2) rounds. In Corollary 2 we
conclude a strong tight bound for any constant degree network
(i.e., ∆ is constant) of Θ(n). This improves upon known
previous upper bounds which, for certain constant degree
graphs, had an upper bound of O(n2). Note that the bound
of O(∆n) is not tight for all graphs (e.g., the complete graph)
and the question of determine the properties of a network that
capture tightly the stopping time of algebraic gossip is still
open.

The second contribution of the paper is the technique we
use to prove our results. We novelly bound the stopping time
of algebraic gossip via reduction to network of queues and by
the stationary state of the network that follows form Jackson’s
theorem for an open network of queues. The idea of using a
queuing theory approach for network coding analysis was first
introduced in [15] but, as opposed to our approach, it did not
include the aspect of gossip communication model. We believe
that the type of reduction presented in this work could be used
for future analysis of gossip protocols.

Third, we compare three gossip algorithms: PUSH,PULL,
and EXCHANGE. While traditionally algebraic gossip used
PULL or PUSH as its gossip algorithms, it was unclear if using
EXCHANGE can lead to significant improvements. We give a
surprising affirmative answer to this question and prove that
using the EXCHANGE algorithm can be unboundedly better
than using PULL or PUSH. We show that while the time it
takes to the EXCHANGE algorithm to complete the algebraic
gossip on the Star graph is linear i.e. Θ(n) the time it takes
the PULL and PUSH algorithms to finish the same task is
Ω(n log n). On contrary, there are many other graphs such as
the Complete graph, and all the bounded degree graphs (see
Section IV) that these three gossip algorithms have the same
asymptotical behavior.

The rest of the paper is organized as follows. In Section
II we present the communication and time models, define
gossip algorithms, gossip protocols, and formally state the
gossip stopping problem. In Section III we show that algebraic
gossip on the Ring graph is linear using Jackson’s theorem. In
Section IV we prove our main results: a tight upper bound for
arbitrary networks and a tight linear bound for graphs with a
constant maximum degree. Section V gives an answer to the
question: ’Is EXCHANGE can be better than PUSH or PULL?’
by providing a topology for which EXCHANGE is unboundedly
faster. We conclude in Section VI.

II. PRELIMINARIES AND MODELS

A. Network and Time Model
We model the communication network by a connected

undirected graph G = G(V,E), where V = {v1, v2, ..., vn} is
the set of vertices and E ⊆ V × V is the set of edges. Let
N(v) ⊆ V be a set of neighbors of node v and dv = |N(v)|
its degree, let ∆ = maxv dv be the maximum degree of G.

The time is assumed to be slotted. We consider n consec-
utive timeslots as one round. We consider the following time
models:

• Asynchronous time model. At every timeslot, a node
selected independently and uniformly at random takes an
action and a single pair of nodes communicates2. In this
model there is no guarantee that a node will be selected
exactly once in a round; nodes can be selected several
times or not at all.

• Synchronous time model. At every round, a random per-
mutation of the nodes is selected uniformly and timeslots
in the round are taken by nodes according to their order
in the permutation. At each timeslot, a single pair of
nodes communicates. The model guarantees that during n
consecutive timeslots each node will be selected exactly
once.

B. Gossip Algorithms

A gossip algorithm defines the way information is ex-
changed or spread in the network. At each timeslot a single
node takes an information spreading action that is divided
into two phases: (i) choosing a communication partner and
(ii) spreading the information. A communication partner
u ∈ N(v) is chosen by node v ∈ V with probability
pvu. Throughout this paper we will assume uniform gossip
algorithms, i.e., pvu = 1

dv
.

We distinguish three gossip algorithms for information
spreading between v and u, PUSH,PULL, and EXCHANGE as
explained in the Introduction. We assume that messages sent
in timeslot t are received in timeslot t and can be forward or
processed at timeslot t+ 1.

C. Algebraic Gossip

A gossip protocol is a task that is being executed using
gossip algorithms, for example, calculation aggregate func-
tions, resource discovery, and database consistency. We now
describe the algebraic gossip protocol for the multicast task:
disseminating n initial values of the nodes to all n nodes.

Let Fq be a field of size q, each node vi ∈ V holds an
initial value xi that is represented as a vector in Frq . We can
represent every message as an integer value bounded by M ,
and therefore, r =

⌈
logq(M)

⌉
. All transmitted messages have

a fixed length and represent linear equations over Fq . The
variables of these equations are the initial values xi ∈ Frq and
a message contains the coefficients of the variables and the
result of the equation, therefore the length of each message
is: r log2 q + n log2 q bits. A message is built as a random
linear combination of all messages stored by the node and
the coefficients are drawn uniformly at random from Fq .
A received message will be appended to the node’s stored
messages only if it is independent of all linear equations
(messages) that are already stored by the node and otherwise it
is ignored. Initially, node vi has only one linear equation that
consists of only one variable corresponding to xi multiplied by
a coefficient 1 and equal to the value of xi, i.e., the node knows
only its initial value. Once a node receives n independent

2Alternately, this model can be seen as each node has a clock which ticks
at the times of a rate 1 Poisson process and there is a total n clock ticks per
round [2].

3

equations it is able to decode all the initial values and thus
completes the task.

For a node v at timeslot t, let Sv(t) be the subspace
spanned by the linear equations (or vectors) it stores (i.e., the
coordinates of each vector are the coefficients of the equation)
at the beginning of timeslot t. The dimension (or rank) of a
node is the dimension of its subspace, i.e., dim(Sv(t)) and it
is equal to the number of independent linear equations stored
by the node.

We say that a node v is a helpful node to node u at the
timeslot t if and only if Sv(t) 6⊂ Su(t), i.e., iff a random linear
combination constructed by v can be linearly independent with
all equations (messages) stored by u. We call a message a
helpful message if it increases the dimension of the node.
The following lemma, which is a part of Lemma 2.1 in [6],
gives a lower bound for the probability of a message sent by
a helpful node to be a helpful message.

Lemma 1 ([6]). Suppose that node v is helpful to node u at
the beginning of the timeslot t. If v transmits a message to u
at the timeslot t, then:

Pr (dim(Su(t+ 1)) > dim(Su(t))) ≥ 1− 1
q .

that is, the probability of the message to be helpful is at least
1− 1

q .

D. The Gossip Stopping Problem
Our goal is to compute bounds on time and number of

messages needed to be sent in the network to complete
various gossip protocols over various gossip algorithms. For
this purpose we define the following:

Definition 1 (Excepted and high probability stopping times).
Given a graph G, gossip algorithm A, and a gossip protocol
P , the stopping time T (A,P, G) is a random variable defined
as the number of timeslots by which all nodes complete the
task. E[T (A,P, G)] is the expected stopping time and the high
probability stopping time T̂ is defined as follows:

T̂ (A,P, G) = min
t∈Z

[
t | Pr (T (A,P, G) ≤ t) ≥ 1− 1

n

]
We can now express our research question formally:

Definition 2 (Gossip stopping problem). Given a graph G, a
gossip algorithm A, and a gossip protocol P , the gossip stop-
ping problem is to determine E[T (A,P, G)] and T̂ (A,P, G),
the expected and high probability stopping times.

In this work we consider A ∈ {PUSH,PULL,EXCHANGE}
and P = algebraic gossip, so when these parameters and G
are understood from the context, we denote the expected and
high probability stopping times as E[T] and T̂ respectively.
Moreover, we usually measure the stopping time in rounds
where one round equals n consecutive timeslots. Thus, we
define the expected number of rounds as E[R] = E[T]/n
and R̂ = T̂ /n as the number of rounds by which all nodes
complete the task with high probability.

For clarity, we present our proofs for the asynchronous time
model and the EXCHANGE algorithm, we extend the results to
the synchronous cases and PUSH and PULL in the appendix
where we also put some of the more technical proofs.

III. LINEAR BOUND ON A RING VIA QUEUING THEORY

Before proving the main results of Theorem 1 in the next
section we prove in this section a bound on the specific case of
a Ring network. This is a simpler case to prove and understand,
and will be used as a basis for the proof of the general result.
A Ring of size n is a connected cycle where each node has a
one left and a one right neighbor.

Theorem 2. For the asynchronous time model and the Ring
graph of size n, the stopping time (measured in rounds)
of algebraic gossip is linear with high probability, and in
expectation i.e., R̂ = Θ(n) and E [R] = Θ(n).

Proof: The idea of the proof is to reduce the problem
of network coding on the Ring graph to a simple system of
queues and use Jackson’s theorem for open networks to bound
the time it takes helpful messages to cross the network.

To simplify our analysis, we cut the Ring in an arbitrary
place and get a Path graph (without loss of generality, we
assume that the leftmost node in the Path is v1 and the
rightmost node is vn), see Fig. 1 (a). It is clear that the stopping
time of the algebraic gossip protocol will be larger in a Path
graph than in a Ring graph. Another simplification that we
will do, for the first part of the proof, is to consider only the
messages that travel from left to right (towards vn) (i.e., other
messages will be ignored, thus increasing the stopping time).

We define a queuing system by assuming a queue with a
single server at each node. Customers of our queuing network
are the helpful messages, i.e., messages that increase the rank
of a node they arrive at. This means that every customer
arriving at some node increases its rank by 1, so the queue
size at a node represents a measure of helpfulness of the node
to its right-hand neighbor (i.e., the queue size is the number
of independent linear equations that the node can generate for
its right-hand neighbor). The service procedure at node vi is a
transmission of a helpful message (customer) from vi to vi+1.
So, from Lemma 1, the probability that a customer will be
serviced at node vi in a given timeslot is: p ≥ 1

n (1 − 1
q),

where 2
n ·

1
2 = 1

n is the probability that in the EXCHANGE
algorithm a message will be sent from vi to vi+1 at any given
timeslot.

Thus, we can consider that a service time in our queuing
system is geometrically distributed with parameter p. The
service time is distributed over the set {0, 1, 2, ...}, which
means that a customer that enters an empty queue at the end
of the timeslot can be immediately serviced with probability
p (since it is the beginning of the next timeslot). A customer
cannot pass more than one node (queue) in a single timeslot
so, we define the transmission time as one timeslot. I.e., the
time needed for a customer to pass through k queues is the
sum of the waiting time in each queue, service time in each
queue and additional k timeslots for transmission from queue
to queue.

The following lemma shows that the service rate can be
bounded from below by an exponential random variable. The
proof of this lemma can be found in Appendix C.

Lemma 2. Let X be a geometric random variable with
parameter p and supported on the set {0, 1, 2, . . .}, i.e., for

4

...v1 v2 Vn-1 Vn

v1 v2 Vn-1 Vn...

...v1 v2 Vn-1 Vn
λ

µ µ µ

(a)

(b)

(c)

Fig. 1. Modeling algebraic gossip in a Path as a queuing network. (a) – Initial Path graph. (b) – One real customer at each node. (c) – Queues are filled
with dummy customers and real customers enter the system from outside.

k ∈ Z+: Pr (X = k) = (1−p)kp, and let Y be an exponential
random variable with parameter p. Then, for all x ∈ R+:

Pr (X ≤ x) ≥ Pr (Y ≤ x) = 1− e−px, (1)

i.e., a random variable Y ∼ Exp(p) stochastically dominates
the random variable X ∼ Geom(p).

We can now assume that the service time is exponentially
distributed with parameter µ = p. This assumption decreases
the rate of transmission of helpful messages, and therefore
will only increase the stopping time. The last is true since the
probability that a customer will be serviced by the time t1 in
a geometrical server is higher than in an exponential server,
and thus, each customer in a network with geometric servers
will arrive at vn by time t2 with higher probability than in a
network with exponential servers. The formal justification of
this step is given later in Lemma 5 which prove this assertion
for trees and not only for the line.

To this end, we have converted our network to a standard
network of queues where the network is open, external arrivals
to nodes will form a Poisson process, service times are
exponentially distributed and the queues are first come first
serve (FCFS). For a queue i let µi denote the service rate and
λi the total arrival rate. We present now Jackson’s theorem for
open networks; a proof of this theorem can be found in [4].

Jackson’s Theorem. In an open Jackson network of n queues
where the utilization ρi = λi

µi
is less than 1 at every queue, the

equilibrium state probability distribution exists, and for state
(k1, k2, . . . , kn) is given by the product of the individual queue
equilibrium distributions: π(k1, k2, ..., kn) = Πn

i=1ρ
ki
i (1−ρi).

We would like to use Jackson’s theorem to conclude that
there is an equilibrium state for our network of queues
and that in the equilibrium state the lengths of the queues
are independent. For Jackson’s theorem to hold we need to
appropriately define the arrival rate to the queues, so we will
slightly change our queuing network.

The initial state of our system is that at every queue we
have one real customer (see Fig. 1 (b)). Now we take all the
n real customers out from the system and let them enter back
via the leftmost queue with a predefined arrival rate. Clearly,
this modification increases the stopping time. We define the
real customers’ arrivals as a Poisson process with rate λ = µ

2 .
So, ρi = λi

µi
= 1

2 < 1 for all queues (i ∈ [1..n]).
Now, according to Jackson’s theorem there exists an equi-

librium state. So, our last step is to ensure that the lengths

of all queues at time t = 0 are according to the equilibrium
state probability distribution. We add dummy customers to all
the queues according to the stationary distribution. By adding
additional dummy customers (we call them dummy since their
arrivals are not counted as a rank increment) to the system,
we make the real customers wait longer in the queues, thus
increasing the stopping time. Our queuing network with the
above modifications is illustrated in Fig. 1 (c), where the real
customers are dark, and the dummy customers are bright.

We will compute the stopping time in two phases. By the
end of the first phase, the node vn will finish the algebraic
gossip task. By the end of the second phase, all the nodes will
finish the task. For the first phase, we will find the time it
takes the n’th (last) real customer to arrive at the rightmost
node, i.e., node vn. By that time, the rank of node vn will
become n and it will finish the algebraic gossip protocol (i.e.,
it received n helpful messages). Let us denote this time (in
timeslots) as T a + T b, where T a is the time needed for the
n’th customer to arrive at the first queue, and T b is the time
needed for the n’th customer to pass through all the n queues
in the system.

For the second phase, let us assume that after T a + T b

timeslots (when vn finishes the algebraic gossip task) all nodes
except node vn forget all the information they have. So, the
rank of all nodes except vn is 0. Let us now analyze the
information flow from the rightmost node in the Path (vn)
to the leftmost node (v1). In the same way, we will represent
all helpful messages that node vn will send as customers in
our queuing system. In order to use Jackson’s Theorem, we
will again remove all the real customers from the system and
will inject them to the queue of node vn with a Poison rate
λ = µ/2. We also fill all the queues in the system with dummy
customers in order to achieve queue lengths that correspond
to the equilibrium state distribution. Clearly, arrival of a real
customer at some node vi (i 6= n) will increase the rank of
that node. So, after the last real customer arrives at node v1,
the ranks of all nodes will be n, and the algebraic gossip task
will be finished.

Using the same equilibrium state analysis as before, we
define the time it takes the last real customer to arrive at the
rightmost node vn as T c, and the time to cross all the n queues
– arriving at node v1 – as T d.

So, T = T a + T b + T c + T d, is an upper bound for the
number of timeslots needed to complete the task. Now we will
find upper bound for T x, x ∈ {a, b, c, d} and then we will use
union bound to obtain an upper bound on T .

5

From Jackson’s Theorem, it follows that the number of
customers in each queue is independent, which implies that
the random variables that represent the waiting times in each
queue are independent. To continue with the proof we need
the following lemmas; the first is a classical result from
queuing theory, the proof of the second lemma can be found
in Appendix D.

Lemma 3 ([19], section 4.3). Time needed to cross one
M/M/1 queue in the equilibrium state has an exponential
distribution with parameter µ− λ.

Lemma 4. Let Y be the sum of n independent and identi-
cally distributed exponential random variables (each one with
parameter µ > 0), and E [Y] = n

µ . Then, for α > 1:

Pr (Y < αE [Y]) > 1− (2e−α/2)n. (2)

Recall that: µ = p ≥ 1
n (1− 1

q) so µ ≥ q−1
qn ≥

1
2n for q ≥ 2.

The random variable T a is the sum of n independent random
variables distributed exponentially with parameter µ/2. From
Lemma 3 we obtain that T b is the sum of n independent
random variables distributed exponentially with parameter µ−
λ = µ

2 . It is clear that T c is distributed exactly as T a and T d

is distributed exactly as T b. Therefore (for µ = 1
2n): E [T x] =∑n

i=1
2
µ = 4n2. Using Lemma 4 (with α = 2) we obtain for

x ∈ {a, b, c, d}:

Pr
(
T x ≤ 8n2

)
≥ 1−

(
2
e

)n
. (3)

Using union bound, we get that:

Pr
(
T ≤ 32n2

)
≥ Pr

(
∩xT x ≤ 8n2

)
(4)

= 1− Pr
(
∪xT x > 8n2

)
(5)

≥ 1− 4
(

2
e

)n
(6)

where x ∈ {a, b, c, d}. It is clear that Pr
(
T ≤ 32n2

)
increases

when µ increases (faster server yields smaller waiting time);
hence, the above inequality holds for any µ ≥ 1

2n .
So, for the asynchronous time model and EXCHANGE we

obtain an upper bound for the high probability stopping time:
T̂ = O(n2) in timeslots, and thus R̂ = O(n), in rounds. Let
us now find an upper bound for the expected number of rounds
needed to complete the task – E [R]:

E [R] = 1
nE [T] (7)

= 1
nE
[
T a + T b + T c + T d

]
(8)

= 4
nE [T x] = 4

n4n2 = 16n = O(n). (9)

The lower bound is clear since in order to finish the alge-
braic gossip task each node has to receive at least n messages,
so at least n2 messages need to be sent and received. Since
in each timeslot at most 2 messages (using EXCHANGE) are
sent, we get: T̂ = Ω(n2), thus R̂ = Ω(n), and E [R] = Ω(n).

The result of the Theorem 2 is then follows: E[R] = Θ(n),
and R̂ = Θ(n).

IV. ALGEBRAIC GOSSIP ON ARBITRARY GRAPHS

Now we are ready to prove our main results. First, we
present the upper bound for any graph as a function of its

maximum degree ∆, and then we give corollaries that are
applications of this result for more specific cases.

Theorem 1 (restated). For the asynchronous time model and
for any graph G of size n with maximum degree ∆, the
stopping time of algebraic gossip is O(∆n) rounds both in
expectation and with high probability.

Proof: Consider an arbitrary graph G of size n with a
maximum degree ∆ and a vertex v. First, let us perform a
(Breath First Search) BFS on G starting at v. The search results
with a directed shortest path spanning tree Gv , rooted at v
where each node has a single edge toward it parent in the
tree (except the root v). In the analysis we will only consider
messages that sent on the edges of the spanning tree in the
direction toward v, i.e., we ignore all messages received from
non tree edges or in the opposite direction (see Fig. 2 (b)).

Now, let us concentrate on the information flow towards the
node v from all other nodes. As in the proof of Theorem 2, we
will define a queuing system with a queue at each node (see
Fig. 2 (c)). The following lemma shows that we can model the
service time at each queue as an exponential random variable
with parameter µ = p.

Let Gv be a tree of size n rooted by node v. Let N (Gv,S)
be a network of n queues where for each node u in Gv there
is a queue and the queue output is connected to the input of
the queue corresponding to the parent of u in Gv . In addition,
each queue is of infinite size and initially has one customer
in the queue (see Fig. 2) (c)). The servers of all the queues
work with a service time distributed as S. Let T (Gv,S) be the
random time by which all the n customers in N (Gv,S) arrive
to the queue of v (we assume v does not serve the customers).

Lemma 5. For any tree Gv and 0 < p ≤ 1:

Pr (T (Gv,Geom(p)) ≤ t) ≥ Pr (T (Gv,Exp(p)) ≤ t) .

The result of this lemma is that any probabilistic upper
bound on the stopping time of v in a tree network with
exponential servers holds for the same tree network with
geometric servers (both with the same parameter p and initially
one customer at each queue).

Once all real customers arrive at v, it will reach rank n and
will finish the algebraic gossip task. Now we have to calculate
the service time parameter p. The degree of each node in G is
at most ∆. Each node in Gv ,except v, has a parent. Since we
virtually remove (i.e., ignore) all edges that do not belong to
Gv , at each node there is exactly one edge that goes towards
the root v. Therefore, the probability that a customer will be
serviced (transmitted towards v) at the end of a given timeslot
is at least: p ≥

(
2
n ·

1
∆

)
(1 − 1

q), where 2
n ·

1
∆ = 2

n∆ is the
probability that in the EXCHANGE algorithm a message will
be sent on the edge that goes towards v during one timeslot,
and (1 − 1

q) is the minimal probability that the message is
helpful (Lemma 1). Clearly, p ≥ 1

n∆ for q ≥ 2 so we set our
exponential servers to work with rate µ = 1

n∆ .

6

v

(a)

v

(b)

v

µ = p = 1
n∆

(c)

v
µ µ µ

(d)

v
µ µ µ

λ = µ/2

(e)

Fig. 2. Reduction of Algebraic Gossip to a system of queues. (a) – Initial graph Gn. (b) – BFS spanning tree Tn. (c) – System of queues
Qtree

n . (d) – System of queues Qline
lmax

. Stopping time of Qline
lmax

is larger than of Qtree
n . (e)–Taking all customers out of the system and use

Jackson theorem for open networks.

Theorem 3. Let Qtreen be a network of n nodes arranged
in a tree topology, rooted at the node v. Each node has an
infinite queue, and a single exponential server with parameter
µ. Initially, there is a single customer in every queue. The time
by which all the n customers leave the network via the root
node v is t(Qtreen) = O(n/µ) with high probability. Formally,
for any α > 1:

Pr
(
t(Qtreen) < α4n/µ

)
> 1− 2(2e−α/2)n. (10)

The main idea of the Theorem 3 proof is to show that the
stopping time of the network Qtreen (i.e., the time by which
all the customers leave the network) is stochastically 3 smaller
or equal to the stopping time of the systems of lmax queues
arranged in a line topology – Qlinelmax

(lmax is the depth of the
tree Qtreen). Then, we make the system Qlinelmax

stochastically
slower by moving all the customers out and make them enter
the system via the farthest queue with the rate λ = µ/2.
Finally, we use Jackson’s Theorem for open networks (similar
to the proof of Theorem 2) to find the stopping time of
the system. See Fig. 2 for the illustration. The full proof of
Theorem 3 can be found in the Appendix G.

Using Theorem 3 for the tree Gv and with µ = 1
∆n , we

obtain the stopping time of the node v: Tv < α4n2∆ with
probability of at least 1− 2(2e−α/2)n.

The same analysis holds for any node u ∈ V , i.e., perform-
ing BFS starting from the node u, defining a queuing system
on the tree Gu, and finding the stopping time of u, Tu. So,
we can use a union bound to obtain the stopping time of all

3For completeness, stochastic dominance is formally defined in Appendix
G1.

the nodes in G:

Pr

(⋂
u∈V

Tu < α4n2∆)

)
≥ 1− 2n(2e−α/2)n. (11)

By letting α = 2 we obtain:

Pr

(⋂
u∈V

Tu < 8n2∆)

)
≥ 1− 2n(2

e)n. (12)

So, we obtained that the stopping time of the algebraic gossip
in G is O(∆n2) timeslots with high probability and thus: R̂ =
O(∆n).

The high probability bound of Eq. (11) is true for any α > 1
and therefore strong enough to bound the expectation (see
proof in the Appendix E) and finish the proof of Theorem 1:

E[T] = O(∆n2) and E[R] = O(∆n). (13)

From Theorem 1, and since the maximum degree is at most
n we can derive a general upper bound of algebraic gossip on
any graph.

Corollary 1. For the asynchronous time model and any graph
G of size n, the gossip stopping time of the algebraic gossip
task is O(n2) rounds with high probability and in expectation.

We can use Theorem 1 to obtain a tight linear bound of
algebraic gossip on graphs with a constant maximum degree.
We note that previous bounds for this case are not tight, for
example, for the Ring graph the bound of [18] is O(n2).

Corollary 2. For the asynchronous time model and any
bounded-degree graph G of size n with a constant maximum
degree ∆, the gossip stopping time of the algebraic gossip
task is linear rounds with high probability and in expectation.

7

(a) (b)

uv

Fig. 3. (a) – Barbell graph: two cliques of size n
2

connected with a single
edge. (b) – Extended barbell graph: additional node between the cliques.

We now show that the upper bound O(∆n) presented in
Theorem 1 is tight in the sense that for each 2 ≤ ∆ ≤ n there
exists a graph for which algebraic gossip takes Ω(∆n) rounds.

Theorem 4. For any 2 ≤ ∆ ≤ n/2 + 1 and for the
asynchronous time model there exists a graph G of size n with
maximum degree ∆ for which algebraic gossip takes Ω(∆n)
rounds with high probability, in particular there is a graph for
which the stopping time is Ω(n2) rounds with high probability.

Proof: We present here the proof for the case of an even
n and ∆ = n/2 + 1 which can be easily extended to smaller
∆. In order to prove this result we will need the following
lemma, the proof can be found in Appendix F:

Lemma 6. Let X be a sum of m independent and identically
distributed geometric random variables with parameter p, i.e.,
X =

∑m
i=1Xi. Then, for any positive integer k < m/p

Pr (X > k) ≥ 1−

(
m

e
m−kp
m kp

)−m
. (14)

Let n be even and consider the Barbell graph which is build
from two disjoint cliques of size n/2 connected by a single
edge between u and v (see Figure 3 (a)). We will concentrate
on the information flow from u to v. It is clear that to achieve
a rank n node u has to receive n

2 helpful messages from v.
Using the fastest gossip variation - EXCHANGE the probability
p that a helpful message will be sent in one timeslot from v
to u is: 2

n ·
1
n/2 ≥ p ≥ 2

n ·
1
n/2 (1 − 1

q). Hence: p ≤ 4
n2 . The

number of timeslots, T , needed to the node v to send n/2
helpful messages can be viewed as a sum of n/2 geometric
random variables with parameter p. Clearly, E [T] = n

2 ·
1
p ≥

n3

8 timeslots. Using Lemma 6 with k =
⌊
n3/16

⌋
, p = 4

n2 ·
n3/16
bn3/16c ≥

4
n2 (we took p even larger than its maximum value;

this will make calculations nicer and will not affect the bound),
and m = n/2 we get:

Pr
(
T >

⌊
n3/16

⌋)
≥ 1−

(
m

e
m−kp
m kp

)−m
(15)

= 1−
(√
e/2
)n
. (16)

It is clear that Pr (T ≥ k) increases when p decreases (the
smaller probability of success – the larger the probability to
finish later). Hence, the above inequality holds for any p ≤
4/n2.

Thus, the number of timeslots needed is at least
⌊
n3/16

⌋
w.h.p. and n3/8 in expectation. So, the total stopping time of
the algebraic gossip protocol over the Barbell graph (measured
in rounds) is: R̂ = Ω(n2), and E [R] = Ω(n2).

V. EXCHANGE CAN BE UNBOUNDEDLY FASTER THAN
PUSH OR PULL

As we presented earlier, there are three gossip variations:
PUSH, PULL, and EXCHANGE. In PUSH or PULL there is
only one message sent between the communication partners,
in EXCHANGE there are two messages sent. Thus, the total
message complexity for the same number of communication
rounds is doubled. So, we would like to know: is the stopping
time decrease, when using EXCHANGE, worth the doubling
message complexity? In this section we give the answer by
presenting a graph for which the EXCHANGE gossip algorithm
is unboundedly faster than the PUSH or PULL algorithms.

Theorem 5. For the Star graph Sn (which is a tree of n
nodes with one node having degree n− 1 and the other n− 1
nodes having degree 1), algebraic gossip using EXCHANGE
is unboundedly better than using PUSH or PULL algorithms.
Formally, for A ∈ {PUSH,PULL}:

lim
n→∞

R̂(A)

R̂(EXCHANGE)
→∞ , and (17)

lim
n→∞

E [R(A)]

E [R(EXCHANGE)]
→∞. (18)

The proof of this theorem is a direct consequence of the
following lemmas. The proofs of these lemmas are omitted.

Lemma 7. For the Star graph Sn, algebraic gossip using
PUSH takes Ω(n2) rounds high probability and in expectation.

Lemma 8. For the Star graph Sn, algebraic gossip using
PULL takes Ω(n log n) rounds with high probability and in
expectation.

Lemma 9. For the Star graph Sn, algebraic gossip using
EXCHANGE takes O(n) rounds with high probability and in
expectation.

VI. CONCLUSIONS

In this work we prove tight bounds on the stopping time
of the algebraic gossip protocol. We prove that the upper
bound for any graph is O(n2) and we show that this bound is
tight, i.e., there exists a graph for which the stopping time
of algebraic gossip is Ω(n2). Our general upper bound is
provided as a function of the maximum degree ∆ of a graph
and thus we can obtain a tight linear bound of Θ(n) for any
graph with a constant maximum degree. Moreover our results
hold for q ≥ 2 (coefficients field size) while prevoius results
were for the case q ≥ n.

It is still an open question to determine the properties of a
network that capture the stopping time of algebraic gossip.
To illustrate this, note the interesting observation that on
the extended-Barbell graph (Fig. 3 (b)) the stopping time of
algebraic gossip is linear. So, by adding a single node to the
graph of Fig. 3 (a) the stopping time has been changed by an
order of magnitude?!

A recent work of Haeupler [9] (to appear in STOC 2011),
that followed the conference version of this paper [1], answers
the question we ask here. Haeupler’s paper makes a significant
progress in analyzing the stopping time of algebraic gossip.

8

While all previous works on algebraic gossip used the notion
of helpful message/node to look at the rank evaluation of the
matrices each node maintains (this approach was initially pro-
posed by [6]), Haeupler used a completely different approach.
Instead of looking on the growth of the node’s subspace
(spanned by the linear equations it has), he proposed to look at
the orthogonal complement of the subspace and then analyze
the process of its disappearing. This elegant and powerful
approach led to a very impressive result: a tight bound of
Θ(n/γ) was proposed for all-to-all communication, where γ
is a min-cut measure of the related graph. This matches our
tight bounds for many topologies (e.g., constant maximum
degree graphs, barbell graph, etc.) and extends them for other
graphs. Haeupler proposed also results for many-to-all (k to
n) communication, but these bounds are not always tight. In
the future work we aim to find tight bounds for the many-
to-all communication with uniform algebraic gossip and also
to analyze the non-uniform gossip approaches for information
dissemination.

REFERENCES

[1] M. Borokhovich, C. Avin, and Z. Lotker. Tight bounds for algebraic
gossip on graphs. In 2010 IEEE International Symposium on Information
Theory Proceedings (ISIT), pages 1758 –1762, jun. 2010.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip
algorithms. IEEE Transactions on Information Theory, 52(6):2508–
2530, June 2006.

[3] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms:
design, analysis and applications. In INFOCOM, pages 1653–1664,
2005.

[4] H. Chen and D. Yao. Fundamentals of Queueing Networks: Perfor-
mance, Asymptotics, and Optimization, volume 46 of Applications of
Mathematics. Springer-Verlag, New York, first edition, 2001.

[5] H. Chen and D. Yao. Fundamentals of Queueing Networks: Perfor-
mance, Asymptotics, and Optimization, volume 46 of Applications of
Mathematics. Springer-Verlag, New York, first edition, 2001.

[6] S. Deb, M. Médard, and C. Choute. Algebraic gossip: a network coding
approach to optimal multiple rumor mongering. IEEE Transactions on
Information Theory, 52(6):2486–2507, 2006.

[7] C. Fragouli, J.-Y. L. Boudec, and J. Widmer. Network coding: an instant
primer. Computer Communication Review, 36(1):63–68, 2006.

[8] G. R. Grimmett and D. R. Stirzaker. Probability and random processes.
Oxford University Press, New York, third edition, 2001.

[9] B. Haeupler. Analyzing Network Coding Gossip Made Easy. To appear
in the 43rd ACM Symposium on Theory of Computing (STOC), 2011.

[10] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros. The benefits
of coding over routing in a randomized setting. In ISIT, pages 442+,
2003.

[11] R. V. D. Hofstad. Random graphs and complex networks. 2010.
[12] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized

rumor spreading. In FOCS, pages 565–574, 2000.
[13] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of

aggregate information. In FOCS, pages 482–491, 2003.
[14] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE

Transactions on Information Theory, 49(2):371–381, 2003.
[15] D. S. Lun, M. Mdard, R. Koetter, and M. Effros. On coding for reliable

communication over packet networks. Physical Communication, 1(1):3
– 20, 2008.

[16] M. Médard and R. Koetter. Beyond routing: An algebraic approach to
network coding. In INFOCOM, pages 122–130, 2002.

[17] M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press,
New York, NY, USA, 2005.

[18] D. Mosk-Aoyama and D. Shah. Information dissemination via network
coding. In ISIT, pages 1748–1752, 2006.

[19] C.-H. Ng and S. Boon-Hee. Queueing Modelling Fundamentals: With
Applications in Communication Networks. Wiley Publishing, 2008.

[20] D. Vasudevan and S. Kudekar. Algebraic gossip on arbitrary networks,
2009.

APPENDIX

A. Algebraic gossip with synchronous time model, with PUSH
and PULL

In this section of Appendix we give theorems and corollaries
that extend the results presented in the paper to both time
models (synchronous and asynchronous), and to the three
gossip algorithms (PUSH, pull, and EXCHANGE).

The first theorem shows that the general upper bound for
algebraic gossip holds also for the synchronous time model.

Theorem 6. For the synchronous time model and for any
graph Gn with maximum degree ∆, the stopping time of
algebraic gossip is O(∆n) rounds with high probability.

Proof: The proof for the synchronous time model is
almost the same as the asynchronous case. The analysis will
be done in rounds instead of timeslots. The probability that
a customer will be serviced (transmitted towards v) at the
end of a given round is at least: p ≥

(
1− (∆−1

∆)2
)

(1 − 1
q),

where
(
1− (∆−1

∆)2
)

= 2
∆ −

1
∆2 is the probability that in the

EXCHANGE algorithm at least one message will be sent on a
specific edge (in a specific direction) during one round, and
(1− 1

q) is the minimal probability that the message is helpful
(Lemma 1).

p ≥ (2
∆ −

1
∆2)(1− 1

q) ≥ 1
∆ (1− 1

q) ≥ 1
2∆ for q ≥ 2.

If the node i has received a message during a specific round
from the node j it will ignore the additional message that can
arrive from the same node j at the same round (this can happen
if i chooses j and j chooses i in the EXCHANGE gossip scheme
in one round). Clearly, this assumption can only increase the
stopping time since we ignore (possibly helpful) information.
T x, x ∈ {a, b} are measured now in rounds and not in

timeslots. Since µ = p ≥ 1
2∆ , using Lemma 4 (with α = 2

and E [T x] = 2n
µ = 4n∆), we obtain:

Pr (T x < 8n∆) > 1−
(

2
e

)n
, for x ∈ {a, b}.

The rest of the proof is the same as in the asynchronous
case and thus the result follows.

The following theorem proves that the worst-case lower
bound for algebraic gossip holds also for the synchronous time
model.

Theorem 7. For the synchronous time model there exists a
graph Gn for which algebraic gossip takes Ω(n2) rounds with
high probability.

Proof: The proof is almost the same as in Theorem 4.
The analysis will be done in rounds instead of timeslots.

Using the fastest gossip variation - EXCHANGE the proba-
bility p that a helpful message will be sent in one round from
v to u is: (1−(n/2−1

n/2)2) ≥ p ≥ (1−(n/2−1
n/2)2)(1− 1

q). Hence:

p ≤ 2
n/2 −

1
(n/2)2 ≤

4
n . Clearly, E [R] = n

2 ·
1
p ≥

n2

8 rounds.

Using Lemma 6 (with k =
⌊
n2/16

⌋
, p = 4

n
n2/16
bn2/16c , and

m = n/2), and R measured in rounds, we get:

Pr
(
R >

⌊
n2/16

⌋)
≥ 1−

(
m

e
m−kp
m kp

)−m
= 1−

(√
e/2
)n
.

9

The rest of the proof is the same as in Theorem 4.
The following corollary shows that our bounds (upper and

lower) for algebraic gossip on general graphs hold also for the
PUSH and PULL gossip algorithms.

Corollary 3. The results of Theorems 1, 4, 6, and 7 hold also
for PUSH and PULL gossip algorithms.

Proof: By moving from the EXCHANGE to the PUSH or
PULL gossip algorithms, we change only the probability of
sending a helpful message on a specific (directed) edge, i.e.,
the service time at each node will change. Easy to see that this
probability will be decreased by a factor of 2 (i.e., the service
time will become twice longer). Clearly, such a reduction will
not affect the asymptotical bounds that were achieved using
Lemmas 4, and 6.

B. Proof of Lemma 5

Lemma 5 (restated): For any tree Gv and 0 < p ≤ 1:

Pr (T (Gv,Geom(p)) ≤ t) ≥ Pr (T (Gv,Exp(p)) ≤ t) .

Proof: We will prove this claim by showing that for each
customer c and for each queue u on the unique path that c
traverse to the root the probability that c reaches u before time
t is larger in N (Gv,Geom(p)) than in N (Gv,Exp(p)).

Consider a reverse topological order of the nodes in Gv ,
v1, v2, . . . , vn = v, i.e., for every node vi, 1 ≤ i < n, the
parent of vi is a node vj and j > i. For a node vi let Ci be the
set of customers that it need to serve on their way to the root.
For a node vi and a customer c ∈ Ci let Gic(t) denote the event
that c reached vi before time t in N (Gv,Geom(p)) and let
E ic(t) be defined similarly for N (Gv,Exp(p)). We claim that
for each 1 ≤ i ≤ n, and each c ∈ Ci, Pr(Gic(t)) ≥ Pr(E ic(t))
and the proof will be by induction on i.
Induction basis: Pr(G1

v1(t)) ≥ Pr(E1
v1(t)). By definition

v1 is a leaf with one customer, itself, and no children so
Pr(G1

v1(t)) = Pr(E1
v1(t)) = 1 for t ≥ 0.

Induction step: Assume the claim is true for 1 ≤ i < n − 1
and we will prove it is true for i + 1. If vi+1 is a leaf then
we are done since this is an identical case to the base case.
Assume vi+1 is not a leaf. The case c = vj+1 is trivial so
consider c ∈ Ci+1 that is not vi+1. Then c must reach vi+1

via one of its children, let it be vk where k < i+ 1. Then by
the induction assumption Pr(Gkc (t′)) ≥ Pr(Ekc (t′)) for any t′,
and from Lemma 2 for any t the probability that a customer
will be served by time t is larger in N (Gv,Geom(p)) than in
N (Gv,Exp(p)), so we have a faster arrival rate and a faster
service rate and the claim follows.

C. Proof of Lemma 2

Lemma 2 (restated): Let X be a geometric random variable
with parameter p and supported on the set {0, 1, 2, . . .}, i.e.,
for k ∈ Z+: Pr (X = k) = (1 − p)kp, and let Y be an
exponential random variable with parameter p. Then, for all
x ∈ R+:

Pr (X ≤ x) ≥ Pr (Y ≤ x) = 1− e−px, (19)

i.e., a random variable Y ∼ Exp(p) stochastically dominates
the random variable X ∼ Geom(p).

Proof: For a geometric random variable X with a success
probability p and supported on the set {0, 1, 2, 3, ...}:

Pr (X > x) = (1− p)x+1, for x ∈ Z+

and

Pr (X > x) = (1− p)bxc+1 , for x ∈ R+.

So, for x ∈ R+,

Pr (X ≤ x) = 1−(1−p)bxc+1 ≥ 1−(1−p)x = 1−eln(1−p)x

and since ln(1− p) ≤ −p we have:

Pr (X ≤ x) ≥ 1− e−px.

Hence, if Y ∼ Exp(p) we obtain:

Pr (X ≤ x) ≥ 1− e−px = Pr (Y ≤ x) ,

i.e., random variable Y ∼ Exp(p) stochastically dominates the
random variable X ∼ Geom(p).

D. Proof of Lemma 4

Lemma 4 (restated): Let Y be the sum of n independent
and identically distributed exponential random variables (each
one with parameter µ > 0), and E [Y] = n

µ . Then, for α > 1:

Pr (Y < αE [Y]) > 1− (2e−α/2)n. (20)

Proof: The generating function of X is given by:

GX(s) = E
[
esX

]
=

∫ ∞
0

esxfX(x)dx.

For any s < δ: GX(s) = δ
δ−s . Thus, the generating function

of Y (sum of independent Xi’s) for s < δ: GY (s) =

(GX(s))
n

=
(

δ
δ−s

)n
. Now, we will apply a Chernoff bound

on Y . For δ > s ≥ 0:

Pr (Y ≥ αE [Y]) = Pr
(
Y ≥ αn

δ

)
= Pr

(
esY ≥ es·αnδ

)
≤

E
[
esY
]

es·α
n
δ

=
GY (s)

es·α
n
δ
.

By letting s = δ/2 we get:

Pr (Y ≥ αE [Y]) ≤

(
δ

(δ − δ
2)eα

δ
2δ

)n
=
(

2e−α/2
)n

and thus:

Pr (Y < αE [Y]) > 1−
(

2e−α/2
)n

.

10

E. Proof of the expectation result in Theorem 1

Theorem 1 states that the expected stopping time of alge-
braic gossip on any graph is: E[T] = O(∆n2) timeslots.

Proof: First, we rewrite the high probability result of Eq.
11 with α > 1:

Pr
(
T ≥ 4αn2∆

)
≤ 2n(2e−α/2)n.

For a positive integer random variable T holds: E [T] =∑∞
i=1 Pr(T ≥ i). So, we have:

E [T] =

∞∑
i=1

Pr(T ≥ i) (21)

=

8n2∆−1∑
i=1

Pr(T ≥ i) +

∞∑
i=8n2∆

Pr(T ≥ i) (22)

≤ 8n2∆ +

∞∑
i=8n2∆

Pr(T ≥ i) (23)

≤ 8n2∆ + 4n2∆

∞∑
α=2

Pr(T ≥ 4αn2∆). (24)

The last inequality is true since ∀i ≤ j,Pr(T ≥ i) ≥
Pr(T ≥ j) and thus we can replace all Pr(T ≥ i) for i ∈
[4αn2∆, ..., 4(α+1)n2∆−1] with 4n2∆×Pr(T ≥ 4αn2∆).
Hence,

E [T] ≤ 8n2∆ + 4n2∆

∞∑
α=2

Pr(T ≥ 4αn2∆) (25)

≤ 8n2∆ + 4n2∆

∞∑
α=2

2n(2e−
α
2)n (26)

= 8n2∆ + 8n3∆2n
∞∑
α=2

(e−n/2)α (27)

= 8n2∆ + 8n3∆2n
e−n

1− e−n/2
(28)

= 8n2∆ +
8n3∆

1− e−n/2

(
2

e

)n
, (29)

for n > 6 : (30)

≤ 8n2∆ + 8n2∆. (31)

Thus: E[T] = O(∆n2), and E[R] = O(∆n).

F. Proof of Lemma 6

Lemma 6 (restated): Let X be a sum of m independent
and identically distributed geometric random variables with
parameter p, i.e., X =

∑m
i=1Xi. Then, for any positive integer

k < m/p

Pr (X > k) ≥ 1−

(
m

e
m−kp
m kp

)−m
. (32)

Proof: First, we will define Y as the sum of k independent
Bernoulli random variables, i.e., Y =

∑k
i=1 Yi, where Yi ∼

Bernoulli(p). Let us notice that:

Pr (X ≤ k) = Pr (Y ≥ m)

The last is true since the event of observing at least m
successes in a sequence of k Bernoulli trials implies that the
sum of m independent geometric random variables is no more
than k. From the other side, if the sum of m independent
geometric random variables is no more than k it implies that
m successes occurred not later than the k-th trial and thus
Y ≥ m.

Now we will use a Chernoff bound for the sum of indepen-
dent Bernoulli random variables presented in [17]: For any
δ > 0 and µ = E [Y]:

Pr (Y ≥ (1 + δ)µ) <

(
eδ

(1 + δ)1+δ

)µ
.

Since µ = E [Y] = kp, and by letting δ = m−kp
kp we obtain:

Pr (Y ≥ (1 + δ)µ) = Pr (Y ≥ m) <

(
m

e
m−kp
m kp

)−m
.

So:

Pr (X ≤ k) <

(
m

e
m−kp
m kp

)−m
,

and thus the result follows.

G. Proof of Theorem 3

For the proof of this theorem we need the following
definitions, claims, and lemmas.

1) Stochastic Dominance:

Definition 3 (Stochastic dominance, stochastic ordering [11],
[8]). We say that a random variable X is stochastically less
than or equal to a random variable Y if and only if Pr(X ≤
t) ≥ Pr(Y ≤ t), and such a relation is denoted as: X � Y .

The proof of the following two claims is omitted.

Claim 1. If for i ∈ {1, 2}, Xi � Yi, Xi are independent, and
Yi are independent, then: maxiXi � maxi Yi.

Claim 2. If for i ∈ {1, 2}, Xi � Yi, Xi are independent, and
Yi are independent, then:

∑
iXi �

∑
i Yi.

2) Later arrivals yield later departures: Consider an infi-
nite FCFS queue with a single exponential server. We define
ai as the time of arrival number i to the queue, and di as
time of the departure number i from the queue. Let Xi be the
exponential random variable representing the service time of
the arrival i. For all i, Xi’s are i.i.d.

Let ai be a sequence of m arrival times to the queue, and
di be a sequence of m departure times from the queue.

Lemma 10. If the sequence ai is replaced with another
sequence of m arrivals – âi, such that: âi � ai ∀i ∈ [1, ...,m],
then, the resulting sequence of m departures will be such
that: d̂i � di ∀i ∈ [1, ...,m]. I.e., if every new arrival
occurred ,stochastically, at the same time or later than the
old arrival, then, every new departure from the queue will
occur ,stochastically, at the same time or later than the old
departure.

Proof: The proof is by induction on the arrival index j,
j ∈ [1, ...,m].

11

µai di

X1 X2 X3 X4 X5

t

d1 d2 d3 d4 d5

a1 a2 a3 a4 a5

di = max(ai, di−1) +Xi

Fig. 4. Arrival and departure times.

• Induction basis: d̂1 � d1. Follows since d1 = a1 + X1,
d̂1 = â1 +X1, and â1 � a1.

• Induction assumption: ∀i < j : d̂i � di.
• Induction step: we need to show that d̂j � dj .

If the j’s arrival occurred when the server was busy, then
dj = dj−1 + Xj . If the server was idle when the j’s arrival
occurred, then dj = aj +Xj . Thus, we can write:

dj = max(dj−1, aj) +Xj , (33)

and d̂j = max(d̂j−1, âj) +Xj . (34)

Since from induction assumption: d̂j−1 � dj−1, and âj � aj ,
using Claims 1 and 2, we obtain d̂j � dj .

Proof of Theorem 3:
We denote the nodes of the queuing system Qtreen as Zlj ,

where l (l ∈ [1, ..., lmax]) is the level of the node in the tree,
and j is the node’s index in the level l. The root of the Qtreen

tree is the node Z1
1 . All servers in the Qtreen network are ON

all the time (work-conserving scheduling), i.e., servers work
whenever they have customers to serve. There are no external
arrivals to the system. Once a customer is serviced on the level
l, it enters the appropriate queue at the level l − 1. When a
customer is serviced by the root Z1

1 , it leaves the network.
Now, let us define the auxiliary queuing systems: Q̂treen and

Qlinelmax
.

Definition 4 (Network Q̂treen). Q̂treen is the same network as
Qtreen with the following change in the servers’ scheduling:

At any given moment, only one server at every level l (l ∈
[1, ..., lmax]) is ON. Once a customer leaves level l, a server
that will be scheduled (turned ON) at the level l, is the server
which has in its queue a customer that has earliest arrival time
to a queue at the level l among all the current customers at the
level l. If there are customers that initially reside at the level
l, they will be serviced by the order of their IDs (we assume
for analysis that every customer has a unique identification
number).

Definition 5 (Network of queues Qlinelmax
). Qlinelmax

is the the
following modification of the network Qtreen , that results in a
network of lmax queues arranged in a line topology.

For all l ∈ [1, .., lmax], we merge all the nodes at the level
l to a single node (a single queue with a single server). We

name this single node at the level l as the first node in Qtreen at
the level l, i.e., Zl1. The customers that initially reside at level
l will be placed in a single queue in the order of their IDs.
This modification results in Qlinelmax

– a network of lmax queues
arranged in a line topology: Zlmax

1 → Zlmax−1
1 → · · · → Z1

1 .

Definition 6 (Network of queues Q̀linelmax
). Q̀linelmax

– is the same
system as Qlinelmax

with the following modification. We take the
last customer at some node Zm1 (m ∈ [1, .., lmax − 1]) and
place it at the head of the queue of the node Zm+1

1 . I.e., we
move one customer, one queue backward in the line of queues.

Definition 7 (Network of queues Q̂linelmax
). Q̂linelmax

– is the same
system as Qlinelmax

with the following modification. We move all
the customers to the queue Zlmax

1 . I.e., all the customers have
to traverse now through all the lmax queues in the line.

We summarize the queuing systems defined above in the
short Table I.

Qtree
n

Original system of n queues arranged in a tree topology. Fig.
5 (a).

Q̂tree
n

System of n queues arranged in a tree topology. Only one
server is active at each level at a given time. Fig. 5 (b).

Qline
lmax

System of lmax queues arranged in a line topology. Fig. 5
(c).

Q̀line
lmax

System of lmax queues arranged in a line topology. One
customer is moved one queue backward.

Q̂line
lmax

System of lmax queues arranged in a line topology. All
customers are moved backward to the queue Zlmax

1 .

TABLE I
QUEUING SYSTEMS USED IN THE PROOF.

The proof of Theorem 3 consists of showing the following
relations between the stopping times of the queuing systems:

t(Qtreen) � t(Q̂treen)

≈ t(Qlinelmax
)

� t(Q̀linelmax
)

� t(Q̂linelmax
) = O(n/µ).

Stopping time of a queuing system t(Q), is the time by
which the last customer leaves the system (via the node Z1

1).
In order to compare the stopping times of queuing systems,
we define the following ordered set (or sequence) of departure
time from a server Z in a queuing system Q: d(Z,Q) =
(d1(Z,Q), d2(Z,Q), ..., di(Z,Q), ...), where di(Z,Q) is the
time of the departure number i from the node (server) Z.

First, we want to show that the stopping time of Qtreen is at
most the stopping time of the system Q̂treen , i.e., t(Qtreen) �
t(Q̂treen).

Lemma 11. In Q̂treen , every departure from the system (via
Z1

1) will occur, stochastically, at the same time or later than
in Qtreen :

di(Z
1
1 , Q̂

tree
n) � di(Z1

1 , Q
tree
n) ∀i ∈ [1, ..., n]. (35)

Thus, in Q̂treen , the last customer will leave the system,
stochastically, at the same time or later than in Qtreen , or:
t(Qtreen) � t(Q̂treen).

12

Z1
1 ON

d(Z1
1 , Q

tree
n)

Z2
1 ON Z2

2 ON Z2
3 ON

Z3
1 ON Z3

2 ON Z3
3 ON Z3

4 ON

Z4
1 ON

(a) – Network Qtreen

d(Z
23 , Q

tree

n

)

Z1
1 ON

d(Z1
1 , Q̂

tree
n)

OFFZ2
1 OFFZ2

2 ONZ2
3

OFFZ3
1 ONZ3

2 OFFZ3
3 OFFZ3

4

Z4
1 ON

(b) – Network Q̂treen

d(Z
23 , Q̂

tree

n

)

Z1
1

ON

ON

d(Z1
1 , Q

line
lmax

)

Z2
1 ON

Z3
1 ON

Z4
1 ON

(c) – Network Qlinelmax

d(Z2
1 , Q

line
lmax

) =
⋃
j d(Z2

j , Q̂
tree
n)

� ≈

Fig. 5. (a) – Network Qtree
n , where all the servers work all the time. (b) – Network Q̂tree

n , where only one server at each level works at a given time. (c)
– Network Qline

lmax
.

Proof: The proof is by induction on the tree level l, l ∈
[1, ..., lmax].
• Induction basis: ∀i, j : di(Zlmax

j , Q̂treen) �
di(Z

lmax
j , Qtreen). This is true since in Q̂treen , the

nodes do not work all the time, and thus the departures
will occur, stochastically, at the same time or later than
in Qtreen . If there is a single node at the level lmax, in
Q̂treen it will be ON all the time as in Qtreen , and thus,
the departures will occur, stochastically, at the same time
in both systems.

• Induction assumption: for all l > m (m ≥ 1),
∀i, j : di(Zlj , Q̂

tree
n) � di(Zlj , Qtreen).

• Induction step: we need to show that:
∀i, j : di(Zmj , Q̂

tree
n) � di(Zmj , Qtreen).

By induction assumption, for l = m + 1:
∀i, j : di(Zm+1

j , Q̂treen) � di(Z
m+1
j , Qtreen). Now let us

take a look at the departures from a node Zmj . There are two
cases: Zmj is a leaf, and Zmj is not a leaf. If Zmj is a leaf,
we can use the same argument as in the induction basis: in
Q̂treen , the node Zmj does not work all the time, and thus the
departures from it in Q̂treen cannot occur earlier than in Qtreen .
If Zmj is not a leaf, it has input/inputs of arrivals from the
level m+ 1. Since the arrivals from the level m+ 1 in Q̂treen

occur, stochastically, at the same time or later than in Qtreen

(by induction assumption), even if the node Zmj would work
all the time (as in Qtreen), we would obtain from Lemma 10:
∀i, j : di(Zmj , Q̂

tree
n) � di(Z

m
j , Q

tree
n). Moreover, in Q̂treen ,

the node Zmj does not work all the time (unless it is the only
node at the level m), thus the departure times in Q̂treen can
be even larger.

Lemma 12. In Qlinelmax
, every departure from the system (via

Z1
1) will occur, stochastically, at the same time as in Q̂treen .

Thus, in Qlinelmax
, the last customer will leave the system,

stochastically, at the same time as in Q̂treen .

Proof: Consider the two following facts regarding the
network Q̂treen . First, a customer entering the level l will be
serviced after all the customers that arrived to the level l
before it, are serviced. Second, at any given moment, only
one customer is being serviced at the level l (if there is at
least one customer at the nodes Zlj). These facts are true due
to the scheduling of the servers in Q̂treen (Definition 4).

Clearly, the same facts are true for the network Qlinelmax
. First,

any customer entering to the level l will be serviced after all
the customers that arrived to the level l before it, are serviced.
Second, at any given moment, only one customer is being
serviced at the level l (if there is at least one customer in the
node Zl1). These facts are true since in Qlinelmax

, at every level,

13

there is a single queue with a single server (Definition 5).
So, the departure times of every customer from every level l

(l ∈ [1, ..., lmax]) are, stochastically, the same in both systems.
The departures from level l = 1 are the departures from the
node Z1

1 , and thus the lemma holds.
Now we are going to move one customer, one queue

backward and will show that the resulting system will have
stochastically larger (or the same) stopping time.

Lemma 13. Consider a network Qlinelmax
. Let m be a level

index: m ∈ [1, .., lmax − 1]. We take the last customer at the
node Zm1 and place it at the head of the queue of the node
Zm+1

1 , and call the resulting network – Q̀linelmax
(Fig. 6 (b)).

Then:

di(Z
1
1 , Q

line
lmax

) � d̀i(Z1
1 , Q̀

line
lmax

) ∀i ∈ [1, ..., n]. (36)

Thus, in Q̀linelmax
, the last customer will leave the system,

stochastically, at the same time or later than in Qlinelmax
, or:

t(Qlinelmax
) � t(Q̀linelmax

).

Proof: We call the customer that was moved – customer
c. Let us take a look at the times of arrivals to the node Zm1 in
Qlinelmax

and in Q̀linelmax
. Since the customer c is already located in

the queue of Zm1 in Qlinelmax
, its arrival time can be considered

as 0. In Q̀linelmax
, the arrival time of c is at least 0 (it should

be serviced at Zm+1
1 before arriving at Zm1). Each one of the

rest customers that should arrive at Zm1 will arrive in Q̀linelmax
,

stochastically, at the same time or later than in Qlinelmax
, since

in Q̀linelmax
the server Zm+1

1 should first service the customer
c, and only then will start servicing the rest customers.
Thus, di(Zm+1

1 , Q̀linelmax
) � di(Zm+1

1 , Qlinelmax
). Using Lemma 10

we obtain that: di(Zm1 , Q̀
line
lmax

) � di(Z
m
1 , Q

line
lmax

). Iteratively
applying Lemma 10 to the nodes Zl1, l ∈ [m − 1, ..., 1], we
obtain the result: di(Z1

1 , Q̀
line
lmax

) � di(Z1
1 , Q

line
lmax

).

Corollary 4. Consider a network Q̂linelmax
(Definition 7) which

is identical to the network Qlinelmax
with the following change.

In Q̂linelmax
, all the n customers are located at the node Zlmax

1

(Fig. 6 (c)). Then:

di(Z
1
1 , Q

line
lmax

) � di(Z1
1 , Q̂

line
lmax

) ∀i ∈ [1, ..., n]. (37)

Thus, in Q̂linelmax
, the last customer will leave the system,

stochastically, at the same time or later than in Qlinelmax
, or:

t(Qlinelmax
) � t(Q̂linelmax

).

Proof: Given the network Qlinelmax
we take one customer

from the tail of some queue (except the queue of the node
Zlmax

1) and place it at the head of the queue of the preceding
node in the Qlinelmax

. According to the Lemma 13, we get a
network in which every customer leaves via Z1

1 , stochastically,
not earlier than in Qlinelmax

. Iteratively moving customers (one
customer and one queue at a time) backwards we get finally
the network Q̂linelmax

in which all the n customers are located at
the node Zlmax

1 . Since at each step, according to Lemma 13,
the departure times from Z1

1 could only get, stochastically,
larger, the lemma holds.

Corollary 5. The time it will take the last customer to leave
the network of n queues arranged in a tree topology is,

stochastically, the same or smaller than in the network of n
queues arranged in a line topology where all the n customers
are located at the farthest queue, i.e., t(Qtreen) � t(Q̂linelmax

).

Proof: This corollary is a direct consequence of the
Lemmas 11, 12, and the Corollary 4.

Now we are ready for the last step of the proof. We will
find the stopping time of a system of queues arranged in a line
topology and with all the customers located at the last queue.

Lemma 14. The time it will take to the last customer to leave
the system Q̂linelmax

(lmax queues arranged in a line topology) is
O(n/µ) with high probability. Formally, for any α > 1:

Pr
(
t(Q̂linelmax

) < α4n/µ
)
> 1− 2(2e−α/2)n. (38)

Proof: Initially, all the customers (from now we will call
them real customers) are located in the last (Zlmax

1) queue. We
now take all the real customers out of this queue and will make
them enter the system (via the Zlmax

1) from outside. We define
the real customers’ arrivals as a Poisson process with rate
λ = µ

2 . So, ρ = λ
µ = 1

2 < 1 for all the queues in the system.
Clearly, such an assumption only increases the stopping time
of the system (stopping time is the time until the last customer
leaves the system). According to Jackson’s theorem, which
proof can be found in [5], there exists an equilibrium state. So,
we need to ensure that the lengths of all queues at time t = 0
are according to the equilibrium state probability distribution.
We add dummy customers to all the queues according to the
stationary distribution. By adding additional dummy customers
to the system, we make the real customers wait longer in the
queues, thus increasing the stopping time.

We will compute the stopping time t(Q̂linelmax
) in two phases:

Let us denote this time as t1 + t2, where t1 is the time needed
for the n’th customer to arrive at the first queue, and t2 is the
time needed for the n’th customer to pass through all the lmax

queues in the system.
From Jackson’s Theorem, it follows that the number of

customers in each queue is independent, which implies that
the random variables that represent the waiting times in each
queue are independent.

The random variable t1 is the sum of n independent
random variables distributed exponentially with parameter
µ/2. From Lemma 3 we obtain that t2 is the sum of lmax

independent random variables distributed exponentially with
parameter µ − λ = µ/2 (Lemma 3). Since lmax ≤ n, we
can assume the worst case (for the upper bound of stopping
time) lmax = n. Thus, we can view t2 as the sum of n
independent random variables distributed exponentially with
parameter µ/2. E [t1] =

∑n
i=1 2/µ = 2n/µ, so, using Lemma

4:

Pr (t1 < αE [t1]) > 1− (2e−α/2)n, (39)

Pr (t1 < α2n/µ) > 1− (2e−α/2)n. (40)

In a similar way we obtain:

Pr (t2 < α2n/µ) > 1− (2e−α/2)n. (41)

14

µ

Zlmax
1

. . .
d(Zlmax

1 , Qlinelmax
)

µ

Zm+1
1

d(Zm+1
1 , Qlinelmax

)

(a) – Network Qlinelmax

µ

Zm1

c . . .
d(Zm1 , Q

line
lmax

)
µ

Z1
1

d(Z1
1 , Q

line
lmax

)

µ

Zlmax
1

. . .
d(Zlmax

1 , Q̀linelmax
)

µ

Zm+1
1

c
d(Zm+1

1 , Q̀linelmax
)

(b) – Network Q̀linelmax

µ

Zm1

. . .
d(Zm1 , Q̀

line
lmax

)
µ

Z1
1

d(Z1
1 , Q̀

line
lmax

)

µ

Zlmax
1

. . .

all the n customers

. . .
d(Zlmax

1 , Q̂linelmax
)

µ

Zm+1
1

d(Zm+1
1 , Q̂linelmax

)

(c) – Network Q̂linelmax

µ

Zm1

. . .
d(Zm1 , Q̂

line
lmax

)
µ

Z1
1

d(Z1
1 , Q̂

line
lmax

)

Fig. 6. (a) – Network Qline
lmax

. (b) – Network Q̀tree
n , where one customer is moved one queue backward. (c) – Network Q̂line

lmax
, where all the customers are

at the last queue.

t(Q̂linelmax
) = t1 + t2, thus, using union bound:

Pr (t1 + t2 < α4n/µ) > 1− 2(2e−α/2)n. (42)
and thus:

t(Q̂linelmax
) = O(n/µ) (for a constant α) (43)

w.p. of at least 1− 2(2e−α/2)n.

From Claim 5 we obtain that t(Qtreen) � t(Q̂linelmax
) and thus:

t(Qtreen) < α4n/µ w.p. of at least 1 − 2(2e−α/2)n for any
α > 1, so the proof of Theorem 3 is completed.

	Introduction
	Preliminaries and Models
	Network and Time Model
	Gossip Algorithms
	Algebraic Gossip
	The Gossip Stopping Problem

	Linear Bound on a Ring via Queuing Theory
	Algebraic Gossip on Arbitrary Graphs
	EXCHANGE Can Be Unboundedly Faster Than PUSH or PULL
	Conclusions
	References
	Appendix
	Algebraic gossip with synchronous time model, with PUSH and PULL
	Proof of Lemma 5
	Proof of Lemma 2
	Proof of Lemma 4
	Proof of the expectation result in Theorem 1
	Proof of Lemma 6
	Proof of Theorem 3
	Stochastic Dominance
	Later arrivals yield later departures

